已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱(chēng)軸為y軸.一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩精英家教網(wǎng)點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4).平行于x軸的直線(xiàn)l過(guò)(0,-1)點(diǎn).
(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線(xiàn)段AB為直徑的圓與直線(xiàn)l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最。孔钚∶娣e是多少?
分析:(1)設(shè)二次函數(shù)的解析式是y=ax2,把A(-4,4)代入求出a代入一次函數(shù)求出k,即可得到答案;
(2)求出B、O的坐標(biāo),求出OA和O到直線(xiàn)y=-1的距離即可得出答案;
(3)作MN的垂直平分線(xiàn),△FMN外接圓的圓心O在直線(xiàn)上,求出MN、DN,根據(jù)勾股定理求出O'F=O'N的圓心坐標(biāo)的縱坐標(biāo)Y,求出y取何值時(shí)r最小,即可求出答案.
解答:解:(1)設(shè)二次函數(shù)的解析式是y=ax2(a≠0),
把A(-4,4)代入得:4=16a,
a=
1
4
,
∴y=
1
4
x2,
把A(-4,4)代入y=kx+1得:4=-4k+1,
∴k=-
3
4
,
∴y=-
3
4
x+1,
答:一次函數(shù)與二次函數(shù)的解析式分別為y=-
3
4
x+1,y=
1
4
x2

(2)答:以線(xiàn)段AB為直徑的圓與直線(xiàn)l的位置關(guān)系是相切.
證明:
y=-
3
4
x+1
y=
1
4
x2
得:
x1=-4
y1=4
x2=1
y2=
1
4
,
∴B(1,
1
4
),
AB的中點(diǎn)O的坐標(biāo)是(-
3
2
,
17
8
),
OA=
(-4+
3
2
)
2
+(4-
17
8
)
2
=
25
8
,
O到直線(xiàn)y=-1的距離是
17
8
+1=
25
8
=0B,
∴以線(xiàn)段AB為直徑的圓與直線(xiàn)l的位置關(guān)系是相切.

(3)解:作MN的垂直平分線(xiàn),△FMN外接圓的圓心O在直線(xiàn)上,
由于平移后的拋物線(xiàn)對(duì)稱(chēng)軸為x=2,對(duì)稱(chēng)軸交x軸于D,
F(0,1)精英家教網(wǎng),平移后二次函數(shù)的解析式是y=
1
4
(x-2)2-t,即y=
1
4
x2-x+1-t,
當(dāng)y=0時(shí),
1
4
x2-x+1-t=0,
設(shè)M(e,0),N(f,0),N在M的右邊,
則e+f=-
-1
1
4
=4,e•f=
1-t
1
4
=4-4t,
∴MN=f-e=
(f+e)2-4ef
=4
t

MD=2
t
,
設(shè)圓心坐標(biāo)(2,y),根據(jù)OF=ON,
22+(y-1)2
=
y2+(2
t
)2
,
y=
5
2
-2t,
r=
22+(y-1)2
=
(2t-
3
2
)
2
+4
,
當(dāng)t=
3
4
時(shí),半徑有最小值2,圓面積最小為4π,
答:當(dāng)t為
3
4
時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最小,最小面積是4π.
點(diǎn)評(píng):本題主要考查對(duì)用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,勾股定理,二次函數(shù)的最值,直線(xiàn)與圓的位置關(guān)系,解二元二次方程組等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱(chēng)軸為y軸.一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(A在B的左側(cè))精英家教網(wǎng),且A點(diǎn)坐標(biāo)為(-4,4).平行于x軸的直線(xiàn)l過(guò)(0,-1)點(diǎn).
(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線(xiàn)段AB為直徑的圓與直線(xiàn)l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最小,最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山東省中考真題 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱(chēng)軸為y軸,一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4),平行于x軸的直線(xiàn)l過(guò)(0,-1)點(diǎn)。

(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線(xiàn)段AB為直徑的圓與直線(xiàn)l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn),當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最小,最小面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱(chēng)軸為y軸.一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4).平行于x軸的直線(xiàn)過(guò)(0,-1)點(diǎn).

(1)求一次函數(shù)與二次函數(shù)的解析式;

(2)判斷以線(xiàn)段AB為直徑的圓與直線(xiàn)的位置關(guān)系,并給出證明;

(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最。孔钚∶娣e是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省三明市尤溪一中高一保送生數(shù)學(xué)模擬卷(二)(解析版) 題型:解答題

已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn)O,對(duì)稱(chēng)軸為y軸.一次函數(shù)y=kx+1的圖象與二次函數(shù)的圖象交于A,B兩點(diǎn)(A在B的左側(cè)),且A點(diǎn)坐標(biāo)為(-4,4).平行于x軸的直線(xiàn)l過(guò)(0,-1)點(diǎn).
(1)求一次函數(shù)與二次函數(shù)的解析式;
(2)判斷以線(xiàn)段AB為直徑的圓與直線(xiàn)l的位置關(guān)系,并給出證明;
(3)把二次函數(shù)的圖象向右平移2個(gè)單位,再向下平移t個(gè)單位(t>0),二次函數(shù)的圖象與x軸交于M,N兩點(diǎn),一次函數(shù)圖象交y軸于F點(diǎn).當(dāng)t為何值時(shí),過(guò)F,M,N三點(diǎn)的圓的面積最。孔钚∶娣e是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案