如圖,拋物線y=x2+mx+n交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是它的頂點(diǎn),點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(﹣3,0).
(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣,)].
(1)m=1,n=-;(2)直線PC的解析式為y=x-.
解析試題分析:(1)由于已知拋物線與x的交點(diǎn)坐標(biāo),則可設(shè)交點(diǎn)式y(tǒng)=(x+3)(x-1),然后展開整理為一般式即可得到m、n的值;
(2)先確定C嗲坐標(biāo),再根據(jù)對(duì)稱性確定頂點(diǎn)P的橫坐標(biāo),把x=-1代入二次函數(shù)解析式可計(jì)算出P點(diǎn)的縱坐標(biāo),然后利用待定系數(shù)法確定直線PC的解析式.
試題解析:(1)設(shè)拋物線的解析式為y=(x+3)(x-1)=x2+x-,
所以m=1,n=-;
(2)∵y=x2+x-,
∴C點(diǎn)坐標(biāo)為(0,-),
∵A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(-3,0),
∴拋物線的對(duì)稱為直線x=-1,
把x=-1代入y=x2+x-得y=-1-=-2,
∴P點(diǎn)坐標(biāo)為(-1,-2),
設(shè)直線PC的解析式為y=kx+b,
把P(-1,-2)、C(0,-)代入得
,解得
∴直線PC的解析式為y=x-.
考點(diǎn): 1.待定系數(shù)法求二次函數(shù)解析式;2.待定系數(shù)法求一次函數(shù)解析式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F(xiàn)為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左則,B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,―3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn)。
⑴求這個(gè)二次函數(shù)的表達(dá)式;
⑵連結(jié)PO、PC,在同一平面內(nèi)把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
⑶當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某跳水運(yùn)動(dòng)員進(jìn)行10m跳臺(tái)跳水的訓(xùn)練時(shí),身體(看成一點(diǎn))在空中的運(yùn)動(dòng)路線是如圖所示坐標(biāo)系下經(jīng)過原點(diǎn)O的一條拋物線(圖中標(biāo)出的數(shù)據(jù)為己知條件).在跳某個(gè)規(guī)定動(dòng)作時(shí),正確情況下,該運(yùn)動(dòng)員在空中的最高處距水面m,入水處與池邊的距離為4m, 同時(shí),運(yùn)動(dòng)員在距水面高度為5m以前,必須完成規(guī)定的翻騰動(dòng)作,并調(diào)整好入水姿勢(shì),否則就會(huì)出現(xiàn)失誤.
(l)求這條拋物線的解析式;
(2)在某次試跳中,測(cè)得運(yùn)動(dòng)員在空中的運(yùn)動(dòng)路線是(1)中的拋物線,且運(yùn)動(dòng)員在空中調(diào)整好入水姿勢(shì)時(shí),距池邊的水平距離為,問:此次跳水會(huì)不會(huì)失誤?通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知一個(gè)二次函數(shù)的圖像經(jīng)過點(diǎn)(4,1)和(,6).
(1)求這個(gè)二次函數(shù)的解析式;
(2)求這個(gè)二次函數(shù)圖像的頂點(diǎn)坐標(biāo)和對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+c(a<0)的圖象過正方形ABOC的三個(gè)頂點(diǎn)A.B.C,求ac的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)分別求出點(diǎn)A、B、C的坐標(biāo);
(2)設(shè)拋物線的頂點(diǎn)為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線過x軸上兩點(diǎn)A(9,0),C(-3,0),且與y軸交于點(diǎn)B(0,-12).
(1)求拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位沿射線AC方向運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位沿射線BA方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).問當(dāng)t為何值時(shí),△APQ∽△AOB?
(3)若M為線段AB上一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
①是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
②當(dāng)點(diǎn)M運(yùn)動(dòng)到何處時(shí),四邊形CBNA的面積最大?求出此時(shí)點(diǎn)M的坐標(biāo)及四邊形CBNA面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù).
(1)求頂點(diǎn)坐標(biāo)和對(duì)稱軸方程;
(2)求該函數(shù)圖象與x標(biāo)軸的交點(diǎn)坐標(biāo);
(3)指出x為何值時(shí),;當(dāng)x為何值時(shí),.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com