【題目】如圖,在△ABC中,∠B=30°,BC的垂直平分線交AB于點(diǎn)E,垂足為D,CE平分∠ACB.若BE=2,則AE的長(zhǎng)為( )
A.
B.1
C.
D.2
【答案】B
【解析】解:∵在△ABC中,∠B=30°,BC的垂直平分線交AB于E,BE=2,
∴BE=CE=2,
∴∠B=∠DCE=30°,
∵CE平分∠ACB,
∴∠ACB=2∠DCE=60°,∠ACE=∠DCE=30°,
∴∠A=180°﹣∠B﹣∠ACB=90°.
在Rt△CAE中,∵∠A=90°,∠ACE=30°,CE=2,
∴AE= CE=1.
故選B.
【考點(diǎn)精析】掌握角平分線的性質(zhì)定理和線段垂直平分線的性質(zhì)是解答本題的根本,需要知道定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等; 定理2:一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上;垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)為P,與y軸交于點(diǎn)A,與直線OP交于點(diǎn)B.
(1)如圖1,若點(diǎn)P的橫坐標(biāo)為1,點(diǎn), ,試確定拋物線的解析式;
(2)在(1)的條件下,若點(diǎn)M是直線AB下方拋物線上的一點(diǎn),且S△ABM=3,求點(diǎn)M的坐標(biāo);
(3)如圖2,若P在第一象限,且,過(guò)點(diǎn)P作軸于點(diǎn)D,將拋物線平移,平移后的拋物線經(jīng)過(guò)點(diǎn)A、D,該拋物線與軸的另一個(gè)交點(diǎn)為C,請(qǐng)?zhí)剿魉倪呅?/span>OABC的形狀,并說(shuō)明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)的解析式為y=2x2﹣4x+3,則其函數(shù)圖象與x軸交點(diǎn)的情況是( )
A.沒(méi)有交點(diǎn)
B.有一個(gè)交點(diǎn)
C.有兩個(gè)交點(diǎn)
D.以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù):1、2、3、4、1,這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別為( )
A. 1、3B. 2、2.5C. 1、2D. 2、2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】百貨商場(chǎng)試銷一批新款襯衫,一周內(nèi)銷售情況如表所示,商場(chǎng)經(jīng)理想要了解哪種型號(hào)最暢銷,那么他最關(guān)注的統(tǒng)計(jì)量是( )
型號(hào)(厘米) | 38 | 39 | 40 | 41 | 42 | 43 |
數(shù)量(件) | 23 | 31 | 35 | 48 | 29 | 8 |
A. 平均數(shù) B. 中位數(shù) C. 眾數(shù) D. 方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算,正確的是( )
A.a2·a3=a6B.3a2-a2=2C.a8÷a2=a4D.(a2)3=a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(其中)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸l與x軸交于點(diǎn)D,且點(diǎn)D恰好在線段BC的垂直平分線上.
(1)求拋物線的關(guān)系式;
(2)過(guò)點(diǎn)的線段MN∥y軸,與BC交于點(diǎn)P,與拋物線交于點(diǎn)N.若點(diǎn)E是直線l上一點(diǎn),且∠BED=∠MNB-∠ACO時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題“在三角形中,至多有一個(gè)內(nèi)角是直角”時(shí),應(yīng)先假設(shè)( )
A. 至少有一個(gè)內(nèi)角是直角 B. 至少有兩個(gè)內(nèi)角是直角
C. 至多有一個(gè)內(nèi)角是直角 D. 至多有兩個(gè)內(nèi)角是直角
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com