拋物線y=ax2+bx+3經(jīng)過點(diǎn)A、B、C,已知A(-1,0),B(3,0).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,在(2)的條件下,延長(zhǎng)DP交x軸于點(diǎn)F,M(m,0)是x軸上一動(dòng)點(diǎn),N是線段DF上一點(diǎn),當(dāng)△BDC的面積最大時(shí),若∠MNC=90°,請(qǐng)直接寫出實(shí)數(shù)m的取值范圍.
(1)由題意得:
a-b+3=0
9a+3b+3=0

解得:
a=-1
b=2
,
故拋物線解析式為y=-x2+2x+3;

(2)令x=0,則y=3,即C(0,3).
設(shè)直線BC的解析式為y=kx+b′,
b′=3
3k+b′=0
,解得:
k=-1
b′=3
,
故直線BC的解析式為y=-x+3.
設(shè)P(a,3-a),則D(a,-a2+2a+3),
∴PD=(-a2+2a+3)-(3-a)=-a2+3a,
∴S△BDC=S△PDC+S△PDB=
1
2
PD•a+
1
2
PD•(3-a)=
1
2
PD•3=
3
2
(-a2+3a)=-
3
2
(a-
3
2
2+
27
8
,
∴當(dāng)a=
3
2
時(shí),△BDC的面積最大,此時(shí)P(
3
2
,
3
2
);

(3)將x=
3
2
代入y=-x2+2x+3,得y=-(
3
2
2+2×
3
2
+3=
15
4
,
∴點(diǎn)D的坐標(biāo)為(
3
2
,
15
4
).
過點(diǎn)C作CG⊥DF,則CG=
3
2

①點(diǎn)N在DG上時(shí),點(diǎn)N與點(diǎn)D重合時(shí),點(diǎn)M的橫坐標(biāo)最大.
∵∠MNC=90°,∴CD2+DM2=CM2,
∵C(0,3),D(
3
2
,
15
4
),M(m,0),
∴(
3
2
-0)2+(
15
4
-3)2+(m-
3
2
2+(0-
15
4
2=(m-0)2+(0-3)2,
解得m=
27
8

∴點(diǎn)M的坐標(biāo)為(
27
8
,0),
即m的最大值為
27
8

②點(diǎn)N在線段GF上時(shí),設(shè)GN=x,則NF=3-x,
∵∠MNC=90°,
∴∠CNG+∠MNF=90°,
又∵∠CNG+∠NCG=90°,
∴∠NCG=∠MNF,
又∵∠NGC=∠MFN=90°,
∴Rt△NCG△MNF,
CG
NF
=
GN
MF
,即
3
2
3-x
=
x
MF
,
整理得,MF=-
2
3
x2+2x=-
2
3
(x-
3
2
2+
3
2
,
∴當(dāng)x=
3
2
時(shí)(N與P重合),MF有最大值
3
2
,
此時(shí)M與O重合,
∴M的坐標(biāo)為(0,0),
∴m的最小值為0,
故實(shí)數(shù)m的變化范圍為0≤m≤
27
8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,矩形ABCO的頂點(diǎn)A、C分別在y軸、x軸正半軸上,點(diǎn)P在AB上,PA=1,AO=2.經(jīng)過原點(diǎn)的拋物線y=mx2-x+n的對(duì)稱軸是直線x=2.
(1)求出該拋物線的解析式.
(2)如圖1,將一塊兩直角邊足夠長(zhǎng)的三角板的直角頂點(diǎn)放在P點(diǎn)處,兩直角邊恰好分別經(jīng)過點(diǎn)O和C.現(xiàn)在利用圖2進(jìn)行如下探究:
①將三角板從圖1中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),兩直角邊分別交OA、OC于點(diǎn)E、F,當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止旋轉(zhuǎn).請(qǐng)你觀察、猜想,在這個(gè)過程中,
PE
PF
的值是否發(fā)生變化?若發(fā)生變化,說明理由;若不發(fā)生變化,求出
PE
PF
的值.
②設(shè)(1)中的拋物線與x軸的另一個(gè)交點(diǎn)為D,頂點(diǎn)為M,在①的旋轉(zhuǎn)過程中,是否存在點(diǎn)F,使△DMF為等腰三角形?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=ax2+bx+c的圖象交x軸于點(diǎn)A(x0,0)和點(diǎn)B(2,0),與y軸的正半軸交于點(diǎn)C,其對(duì)稱軸是直線x=-1,tan∠BAC=2,點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)D.
(1)確定A、C、D三點(diǎn)的坐標(biāo);
(2)求過B、C、D三點(diǎn)的拋物線的解析式;
(3)若過點(diǎn)(0,3)且平行于x軸的直線與(2)小題中所求拋物線交于M、N兩點(diǎn),以MN為一邊,拋物線上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式;
(4)當(dāng)
1
2
<x<4時(shí),(3)小題中平行四邊形的面積是否有最大值?若有,請(qǐng)求出;若無(wú),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線C1:y=-2x2+bx-6與拋物線C2關(guān)于原點(diǎn)對(duì)稱,拋物線C1與x軸分別交于A(1,0),B(m,0),頂點(diǎn)為M,拋物線C2與x軸分別交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),頂點(diǎn)為N.
(1)求m的值;
(2)求拋物線C2的解析式;
(3)若拋物線C1與拋物線C2同時(shí)以每秒1個(gè)單位的速度沿x軸方向分別向左、向右運(yùn)動(dòng),此時(shí)記A,B,C,D,M,N在某一時(shí)刻的新位置分別為A′,B′,C′,D′,M′,N′,當(dāng)點(diǎn)A′與點(diǎn)D′重合時(shí)運(yùn)動(dòng)停止.在運(yùn)動(dòng)過程中,四邊形B′M′C′N′能否形成矩形?若能,求出此時(shí)運(yùn)動(dòng)時(shí)間t(秒)的值,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+2mx+m+2的圖象與x軸交于A(-1,0),B兩點(diǎn),在x軸上方且平行于x軸的直線EF與拋物線交于E,F(xiàn)兩點(diǎn),E在F的左側(cè),過E,F(xiàn)分別作x軸的垂線,垂足是M,N.
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo);
(2)設(shè)BN=t,矩形EMNF的周長(zhǎng)為C,求C與t的函數(shù)表達(dá)式;
(3)當(dāng)矩形EMNF的周長(zhǎng)為10時(shí),將△ENM沿EN翻折,點(diǎn)M落在坐標(biāo)平面內(nèi)的點(diǎn)記為M',試判斷點(diǎn)M'是否在拋物線上?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△OAB的頂點(diǎn)A(-6,0),B(0,2),O是坐標(biāo)原點(diǎn),將△OAB繞點(diǎn)O按順時(shí)針旋轉(zhuǎn)90°,得到△ODC.
(1)寫出C,D兩點(diǎn)的坐標(biāo);
(2)求過A,D,C三點(diǎn)的拋物線的解析式,并求此拋物線頂點(diǎn)E的坐標(biāo);
(3)證明AB⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線y=kx+2經(jīng)過點(diǎn)P(1,
5
2
),與x軸相交于點(diǎn)A;拋物線y=ax2+bx(a>0)經(jīng)過點(diǎn)A和點(diǎn)P,頂點(diǎn)為M.
(1)求直線y=kx+2的表達(dá)式;
(2)求拋物線y=ax2+bx的表達(dá)式;
(3)設(shè)此直線與y軸相交于點(diǎn)B,直線BM與x軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(
8
3
,0),試判斷△ACB與△ABD是否相似,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的圖象如圖所示,根據(jù)圖象可知,拋物線的解析式可能是( 。
A.y=x2-x-2B.y=-
1
2
x2-
1
2
x+2
C.y=-
1
2
x2-
1
2
x+1
D.y=-x2+x+2

查看答案和解析>>

同步練習(xí)冊(cè)答案