有一塔形幾何體由若干個正方體構成, 構成方式如圖所示: 上層正方體底面的四個頂點恰好是下層正方體上底面各邊的中點. 已知最上層正方體的棱長為2, 且該塔形幾何體的表面積(不含重疊部分,含最底層正方體的底面面積) 超過39, 則該塔形中正方體的個數(shù)至少是______個.

 

【答案】

4

【解析】本題考查的是找規(guī)律

求出各個層的正方體的表面積,求出它們的和,該塔形的表面積(含最底層正方體的底面面積)超過39,求出正方體的個數(shù)至少個數(shù).

底層正方體的表面積為24;

第2層正方體的棱長,每個面的面積為

第3層正方體的棱長為,每個面的面積為;

┉,

第n層正方體的棱長為,每個面的面積為;

若該塔形為n層,則它的表面積為,

因為該塔形的表面積超過39,所以該塔形中正方體的個數(shù)至少是6.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網有一塔形幾何體由若干個正方體構成,構成方式如圖所示:上層正方體底面的四個頂點恰好是下層正方體上底面各邊的中點.已知最底層正方體的棱長為2,且該塔形幾何體的全面積(含最底層正方體的底面面積)超過39,則該塔形中正方體的個數(shù)至少是( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網有一塔形幾何體由若干個正方體構成,構成方式如圖所示:上層正方體底面的四個頂點恰好是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,且該塔形幾何體的全面積(含最底層正方體的底面面積)超過639,則該塔形中正方體的個數(shù)至少是
 
個.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(義蓬二中 項國慶)(解析版) 題型:填空題

有一塔形幾何體由若干個正方體構成,構成方式如圖所示:上層正方體底面的四個頂點恰好是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,且該塔形幾何體的全面積(含最底層正方體的底面面積)超過639,則該塔形中正方體的個數(shù)至少是    個.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)義蓬二中中考模擬數(shù)學試卷(解析版) 題型:填空題

有一塔形幾何體由若干個正方體構成,構成方式如圖所示:上層正方體底面的四個頂點恰好是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,且該塔形幾何體的全面積(含最底層正方體的底面面積)超過639,則該塔形中正方體的個數(shù)至少是    個.

查看答案和解析>>

同步練習冊答案