如圖,菱形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B、C均在第一象限,OA=2,∠AOC=60°.點(diǎn)D在邊AB上,將四邊形OABC沿直線0D翻折,使點(diǎn)B和點(diǎn)C分別落在這個(gè)坐標(biāo)平面的點(diǎn)B′和C′處,且∠C′DB′=60°.若某反比例函數(shù)的圖象經(jīng)過點(diǎn)B′,則這個(gè)反比例函數(shù)的解析式為   
【答案】分析:連接AC,求出△BAC是等邊三角形,推出AC=AB,求出△DC′B′是等邊三角形,推出C′D=B′D,得出CB=BD=B′C′,推出A和D重合,連接BB′交x軸于E,求出AB′=AB=2,∠B′AE=60°,求出B′的坐標(biāo)是(3,-),設(shè)經(jīng)過點(diǎn)B′反比例函數(shù)的解析式是y=,代入求出即可.
解答:解:
連接AC,
∵四邊形OABC是菱形,
∴CB=AB,∠CBA=∠AOC=60°,
∴△BAC是等邊三角形,
∴AC=AB,
∵將四邊形OABC沿直線0D翻折,使點(diǎn)B和點(diǎn)C分別落在這個(gè)坐標(biāo)平面的點(diǎn)B′和C′處,
∴BD=B′D,CD=C′D,∠DB′C′=∠ABC=60°,
∵∠B′DC′=60°,
∴∠DC′B′=60°,
∴△DC′B′是等邊三角形,
∴C′D=B′D,
∴CB=BD=B′C′,
即A和D重合,
連接BB′交x軸于E,
則AB′=AB=2,∠B′AE=180°-(180°-60°)=60°,
在Rt△AB′E中,∠B′AE=60°,AB′=2,
∴AE=1,B′E=,OE=2+1=3,
即B′的坐標(biāo)是(3,-),
設(shè)經(jīng)過點(diǎn)B′反比例函數(shù)的解析式是y=,
代入得:k=-3
即y=-,
故答案為:y=-
點(diǎn)評(píng):本題考查了折疊性質(zhì),菱形性質(zhì),等邊三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生的計(jì)算能力,題目比較好,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA′B′C′的位置,若OB=2
3
,∠C=120°,則點(diǎn)B′的坐標(biāo)為( 。
A、(3,
3
B、(3,-
3
C、(
6
,
6
D、(
6
,-
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)如圖,菱形OABC的頂點(diǎn)B在y軸上,頂點(diǎn)C的坐標(biāo)為(-3,2),若反比例函數(shù)y=
k
x
(x>0)的圖象經(jīng)過點(diǎn)A,則反比例函數(shù)的表達(dá)式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,菱形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B、C均在第一象限,OA=2,∠AOC=60°.點(diǎn)D在邊AB上,將四邊形OABC沿直線0D翻折,使點(diǎn)B和點(diǎn)C分別落在這個(gè)坐標(biāo)平面的點(diǎn)B′和C′處,且∠C′DB′=60°.若某反比例函數(shù)的圖象經(jīng)過點(diǎn)B′,則這個(gè)反比例函數(shù)的解析式為
y=-
3
3
x
y=-
3
3
x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)105°至OA′B′C′的位置.若OB=4
3
,∠C=120°,則點(diǎn)B′的坐標(biāo)為
(-2
6
,2
6
(-2
6
,2
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(3,4),頂點(diǎn)A在x軸的正半軸上.反比例函數(shù)y=
kx
(x>0)的圖象經(jīng)過頂點(diǎn)B,求k的值.

查看答案和解析>>

同步練習(xí)冊答案