若拋物線y=-x2+bx+(2m-1)的對稱軸是x=4,則b=________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:非常講解·教材全解全析 數(shù)學(xué) 九年級下。ㄅ浔睅煷笳n標(biāo)) 配北師大課標(biāo) 題型:013

若拋物線y=-x2+bx+c經(jīng)過(3,-1)和(0,-4)兩點,則b+c值為

[  ]

A.2

B.-2

C.3

D.-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材完全解讀 九年級數(shù)學(xué) 下冊(配北師大版新課標(biāo)) 北師大版新課標(biāo) 題型:044

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸上,點C在y軸軸上,OA=10,OC=6.

(1)如圖1所示,在OA上選取一點G,將△COG沿CG翻折,使點O落在BC邊上,記為E,求折痕CG所在直線的解析式.

(2)如圖2所示,在OC上選取一點D,將△AOD沿AD翻折,使點O落在BC邊上,記為

①求折痕AD所在直線的解析式;

②再作F∥AB,交AD于點F,若拋物線y=-x2+h過點F,求此拋物線的解析式,并判斷它與直線AD交點的個數(shù).

(3)如圖3所示,一般地,在OC,OA上選取適當(dāng)?shù)狞c,,使紙片沿翻折后,點O落在BC邊上,記為,請你猜想折痕所在直線與(2)中的拋物線會有什么關(guān)系,用(1)中的情形驗證你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:上海市奉賢區(qū)2011年中考二模數(shù)學(xué)試題 題型:044

已知:直角坐標(biāo)系xoy中,將直線y=kx沿y軸向下平移3個單位長度后恰好經(jīng)過B(-3,0)及y軸上的C點.若拋物線y=-x2+bx+c與x軸交于AB兩點(點A在點B的右側(cè)),且經(jīng)過點C,(1)求直線BC及拋物線的解析式;(2)設(shè)拋物線的頂點為D,點P在拋物線的對稱軸上,且∠APD=∠ACB,求點P的坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江省樂清市鹽盆一中九年級第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題10分)如圖,矩形OBCD的邊OD、OB分別在x軸正半軸和y軸負半軸上,且OD=10,OB=8.將矩形的邊BC繞點B逆時針旋轉(zhuǎn),使點C恰好與x軸上的點A重合.

(1)直接寫出點A、B的坐標(biāo):A(    ,     )、B(     ,     );
(2)若拋物線y=-x2+bx+c經(jīng)過點A、B,請求出這條拋物線的解析式;
(3)當(dāng)≤x≤7,在拋物線上存在點P,使△ABP的面積最大,那么△ABP最大面積是                                 .(請直接寫出結(jié)論,不需要寫過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省樂清市九年級第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題10分)如圖,矩形OBCD的邊OD、OB分別在x軸正半軸和y軸負半軸上,且OD=10,OB=8.將矩形的邊BC繞點B逆時針旋轉(zhuǎn),使點C恰好與x軸上的點A重合.

(1)直接寫出點A、B的坐標(biāo):A(    ,     )、B(     ,     );

(2)若拋物線y=-x2+bx+c經(jīng)過點A、B,請求出這條拋物線的解析式;

(3)當(dāng)≤x≤7,在拋物線上存在點P,使△ABP的面積最大,那么△ABP最大面積是                                 .(請直接寫出結(jié)論,不需要寫過程)

 

查看答案和解析>>

同步練習(xí)冊答案