【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=+bx+c的圖象經(jīng)過點(diǎn)A(1,0),且當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等.一次函數(shù)y=x+3與二次函數(shù)y=+bx+c的圖象分別交于B,C兩點(diǎn),點(diǎn)B在第一象限.

(1)求二次函數(shù)y=+bx+c的表達(dá)式;

(2)連接AB,求AB的長;

(3)連接AC,M是線段AC的中點(diǎn),將點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.

【答案】(1)拋物線的解析式為y=x2+x2;

【解析】

試題分析:(1)根據(jù)當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等,可得(5,c),根據(jù)待定系數(shù)法,可得函數(shù)解析式;

(2)聯(lián)立拋物線與直線,可得方程組,根據(jù)解方程組,可得B、C點(diǎn)坐標(biāo),根據(jù)勾股定理,可得AB的長;

(3)根據(jù)線段中點(diǎn)的性質(zhì),可得M點(diǎn)的坐標(biāo),根據(jù)旋轉(zhuǎn)的性質(zhì),可得MN與BM的關(guān)系,根據(jù)平行四邊形的判定,可得答案.

試題解析:(1)當(dāng)x=0時(shí),y=c,即(0,c).

由當(dāng)x=0和x=5時(shí)所對(duì)應(yīng)的函數(shù)值相等,得(5,c).

將(5,c)(1,0)代入函數(shù)解析式,得,解得

故拋物線的解析式為y=x2+x2;

(2)聯(lián)立拋物線與直線,得

,解得,,即B(2,1),C(5,2).

由勾股定理,得AB==;

(3)如圖:

四邊形ABCN是平行四邊形,M是AC的中點(diǎn),AM=CM.

點(diǎn)B繞點(diǎn)M旋轉(zhuǎn)180°得到點(diǎn)N,BM=MN,

四邊形ABCN是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtAOB的一條直角邊OB在x軸上,雙曲線y=經(jīng)過斜邊OA的中點(diǎn)C,與另一直角邊交于點(diǎn)D.若SOCD=9,則SOBD的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國家家電下鄉(xiāng)政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).

1)假設(shè)每臺(tái)冰箱降價(jià)x,商場(chǎng)每天銷售這種冰箱的利潤是y元,請(qǐng)寫出yx之間的函數(shù)表達(dá)式(不要求寫自變量的取值范圍);

2)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的xy的部分對(duì)應(yīng)值如下表:

x

﹣1

0

0.5

2

y

﹣1

2

3.75

2

下列結(jié)論中正確的有________個(gè).

(1)ac<0;(2)當(dāng)x>1時(shí),y的值隨x值的增大而減;(3)x=2是方程ax2+(b﹣1)x+c=0的一個(gè)根;(4)當(dāng)﹣1<x<2時(shí),ax2+(b﹣1)x+c>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在中,,.點(diǎn)D從點(diǎn)C出發(fā)沿方向以每秒4個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿方向以每秒2個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),設(shè)點(diǎn)DE運(yùn)動(dòng)的時(shí)間是t.過點(diǎn)D于點(diǎn)F,連接、

1)求證:;

2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

3)當(dāng)t為何值時(shí),為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2﹣2x+m+1x軸交于A(x1 , 0)、B(x2 , 0)兩點(diǎn),且x1<0,x2>0,與y軸交于點(diǎn)C,頂點(diǎn)為P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)根,則x1+x2=﹣ ,x1x2=

(1)m的取值范圍;

(2)OA=3OB,求拋物線的解析式;

(3)(2)中拋物線的對(duì)稱軸PD上,存在點(diǎn)Q使得△BQC的周長最短,試求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=ACtanA= ,PBC上一點(diǎn),且BP:PC=3:5,E、F分別為AB、AC上的點(diǎn),且∠EPF=2B,若△EPF的面積為6,則EF=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,垂直平分, 垂足為

1)求的度數(shù);

2)如圖2, ,垂足為,連接,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案