精英家教網 > 初中數學 > 題目詳情
如圖,AB為⊙O的弦,⊙O的半徑為5,OC⊥AB于點D,交⊙O于點C,且CD=1,則弦AB的長是   
【答案】分析:連接AO,得到直角三角形,再求出OD的長,就可以利用勾股定理求解.
解答:解:連接AO,
∵半徑是5,CD=1,
∴OD=5-1=4,
根據勾股定理,
AD===3,
∴AB=3×2=6,
因此弦AB的長是6.
點評:解答此題不僅要用到垂徑定理,還要作出輔助線AO,這是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,AB為⊙O的弦,∠AOB=100°,點C在⊙O上,且
AC
=
BC
,則∠CAB的度數為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,AB為⊙O的弦,過點O作AB的平行線,交⊙O于點C,直線OC上一點D滿足∠D=∠ACB.
(1)判斷直線BD與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑等于4,tan∠ACB=
43
,求CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

54、如圖,AB為⊙O的弦,C、D為直線AB上兩點,要使OC=OD,則圖中的線段必滿足的條件是
AC=BD

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•閔行區(qū)三模)已知:如圖,AB為⊙O的弦,OD⊥AB,垂足為點D,DO的延長線交⊙O于點C.過點C作CE⊥AO,分別與AB、AO的延長線相交于E、F兩點.CD=8,sin∠A=
35

求:(1)弦AB的長;
(2)△CDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,AB為⊙0的弦,⊙0的半徑為10,0C⊥AB于點D,交⊙0于點C,且CD=2,則弦AB的長是
12
12

查看答案和解析>>

同步練習冊答案