如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,DE,AB相交于點G,若∠BAC=300,下列結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號是( ▲ )
A. ②④ B. ①③ C. ①③④ D. ①②③④
C
【解析】∵ACE是等邊三角形∴∠EAC=60°,AE=AC ∵∠BAC=30°
∴∠FAE=∠ACB=90°,AB=2BC ∵F為AB的中點 ∴AB=2AF ∴BC=AF
∴△ABC≌△EFA ∴∠AEF=∠BAC=30° ∴EF⊥AC.故①是正確的;
∵△ABC≌△EFA ∴EF=AB ∵AB=AD ∴AD=EF 同理可證AE=DF
∴ADFE是平行四邊形∵F為AB的中點∴△AFD是直角三角形,AD≠DF.
因此四邊形ADFE不是菱形.故②不正確;
∵ADFE是平行四邊形∴AG=AF=AB∵AD=AB∴AD=4AG.故③是正確的;
∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS).故④是正確的.故選C.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、①②③ | B、①④⑤ | C、①③⑤ | D、①③④ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com