閱讀下列材料:?jiǎn)栴}:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC,探究PG與PC的位置關(guān)系
小穎同學(xué)的思路是:延長(zhǎng)GP交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理使問題得到解決.
請(qǐng)你參考小穎同學(xué)的思路,探究并解決下列問題:
(1)請(qǐng)你寫出上面問題中線段PG與PC的位置關(guān)系;
(2)將圖1中的菱形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使菱形BEFG的對(duì)角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題申的其他條件不變(如圖2).你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明,

解:(1)線段PG與PC的位置關(guān)系是PG⊥PC.
理由:延長(zhǎng)GP,交CD于點(diǎn)H,
∵四邊形ABCD與四邊形BEFG是菱形,
∴CD∥AB∥GF,
∴∠PDH=∠PFG,∠DHP=∠PGF,
∵P是線段DF的中點(diǎn),
∴DP=PF,
在△DPH和△FGP中,
,
∴△DPH≌△FGP(AAS),
∴PH=PG,DH=GF,
∵CD=BC,GF=GB=DH,
∴CH=CG,
∴CP⊥HG,
即PG⊥PC;

(2)猜想:(1)中的結(jié)論沒有發(fā)生變化.
證明:如圖,延長(zhǎng)GP交AD于點(diǎn)H,連接CH,CG,
∵P是線段DF的中點(diǎn),
∴FP=DP,
∵AD∥FG,
∴∠GFP=∠HDP.
又∠GPF=∠HPD,
∴△GFP≌△HDP
∴GP=HP,GF=HD,
∵四邊形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°.
由∠ABC=∠BEF=60°,且菱形BEFG的對(duì)角線BF恰好與菱形ABCD的邊AB在同一條直線上,
∴∠GBC=60°.
∴∠HDC=∠GBC.
∵四邊形BEFG是菱形,
∴GF=GB.
∵△HDC≌△GBC.
∴CH=CG.
∴PH=PG,PG⊥PC.
分析:(1)根據(jù)題意可知小穎的思路為,通過判定三角形DHP和PGF為全等三角形來(lái)得出證明三角形HCG為等腰三角形且P為底邊中點(diǎn)的條件;
(2)思路同上,延長(zhǎng)GP交AD于點(diǎn)H,連接CH,CG,本題中除了如(1)中證明△GFP≌△HDP(得到P是HG中點(diǎn))外還需證明△HDC≌△GBC(得出三角形CHG是等腰三角形).
點(diǎn)評(píng):此題考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及三角函數(shù)的定義.此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問題:現(xiàn)有5個(gè)邊長(zhǎng)為1的正方形,排列形式如圖①,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為x(x>0),依題意,割補(bǔ)前后圖形的面積相等,有x2=5,解得x=
5
,由此可知新正方形得邊長(zhǎng)等于兩個(gè)小正方形組成得矩形對(duì)角線得長(zhǎng),于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.精英家教網(wǎng)
請(qǐng)你參考小東同學(xué)的做法,解決如下問題:
現(xiàn)有10個(gè)邊長(zhǎng)為1的正方形,排列形式如圖④,請(qǐng)把它們分割后拼接成一個(gè)新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中用實(shí)線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

25、請(qǐng)閱讀下列材料:
問題:如圖,在正方形ABCD和平行四邊形BEFG中,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC.
探究:當(dāng)PG與PC的夾角為多少度時(shí),平行四邊形BEFG是正方形?
小聰同學(xué)的思路是:首先可以說明四邊形BEFG是矩形;然后延長(zhǎng)GP交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理可以探索出問題的答案.
請(qǐng)你參考小聰同學(xué)的思路,探究并解決這個(gè)問題.
(1)求證:四邊形BEFG是矩形;
(2)PG與PC的夾角為
90
度時(shí),四邊形BEFG是正方形.
理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問題:已知方程x2+x-1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.
解:設(shè)所求方程的根為y,則y=2x所以x=
y
2

把x=
y
2
代入已知方程,得(
y
2
2+
y
2
-1=0
化簡(jiǎn),得y2+2y-4=0
故所求方程為y2+2y-4=0.
這種利用方程根的代換求新方程的方法,我們稱為“換根法”.
請(qǐng)用閱讀村料提供的“換根法”求新方程(要求:把所求方程化為一般形式):
(1)已知方程x2+x-2=0,求一個(gè)一元二次方程,使它的根分別為己知方程根的相反數(shù),則所求方程為:
 
;
(2)己知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是己知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•新鄉(xiāng)模擬)閱讀下列材料:?jiǎn)栴}:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點(diǎn)A,B,E在同一條直線上,P是線段DF的中點(diǎn),連接PG,PC,探究PG與PC的位置關(guān)系
小穎同學(xué)的思路是:延長(zhǎng)GP交DC于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過推理使問題得到解決.
請(qǐng)你參考小穎同學(xué)的思路,探究并解決下列問題:
(1)請(qǐng)你寫出上面問題中線段PG與PC的位置關(guān)系;
(2)將圖1中的菱形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使菱形BEFG的對(duì)角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題申的其他條件不變(如圖2).你在(1)中得到的結(jié)論是否發(fā)生變化?寫出你的猜想并加以證明,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:?jiǎn)栴}:現(xiàn)有5分邊長(zhǎng)為1的正方形,排列形式如圖1,請(qǐng)把它們分割后拼接成一個(gè)新的正方形.要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中畫出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長(zhǎng)為x(x>0),依題意,割補(bǔ)前后圖形的面積相等,有x2=5,解得x=
5
,由此可知新正方形的邊長(zhǎng)等于兩個(gè)小正方形組成的矩形對(duì)角線長(zhǎng),于是,畫出如圖2所示的分割線,拼出如圖3所示的新正方形.
請(qǐng)你參考小東的做法,解決以下問題.要求:在圖4中畫出分割線,并在圖5的正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長(zhǎng)均為1)中畫出拼接的新正方形.(說明:直接畫出圖形,不要求寫分析過程)

查看答案和解析>>

同步練習(xí)冊(cè)答案