如圖,在四邊形ABCD中,點(diǎn)E,F(xiàn)分別是AD,BC的中點(diǎn),G,H分別是BD,AC的中點(diǎn),AB,CD滿足什么條件時(shí),四邊形EGFH是菱形?請(qǐng)證明你的結(jié)論.

解:當(dāng)AB=CD時(shí),四邊形EGFH是菱形.
證明:∵點(diǎn)E,G分別是AD,BD的中點(diǎn),
∴EGAB,同理HFAB,∴EGHF.
∴四邊形EGFH是平行四邊形.
∵EG=AB,又可同理證得EH=CD,
∵AB=CD,∴EG=EH,
∴四邊形EGFH是菱形.
分析:本題可根據(jù)菱形的定義來(lái)求解.E、G分別是AD,BD的中點(diǎn),那么EG就是三角形ADB的中位線,同理,HF是三角形ABC的中位線,因此EG、HF同時(shí)平行且相等于AB,因此EG∥=HF.
因此四邊形EHFG是平行四邊形,E、H是AD,AC的中點(diǎn),那么EH=CD,要想證明EHFG是菱形,那么就需證明EG=EH,那么就需要AB、CD滿足AB=CD的條件.
點(diǎn)評(píng):本題考查了菱形的判定,運(yùn)用的是菱形的定義:一組鄰邊相等的平行四邊形是菱形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案