解:(1)Rt△ABC中,∠C=90°,AB=50,
∵D,F(xiàn)是AC,BC的中點,
∴DE∥BC,EF∥AC,∴DF=
AB=25
(2)能.
如圖1,連接DF,過點F作FH⊥AB于點H,
∵D,F(xiàn)是AC,BC的中點,
∴DE∥BC,EF∥AC,四邊形CDEF為矩形,
∴QK過DF的中點O時,QK把矩形CDEF分為面積相等的兩部分
(注:可利用全等三角形借助割補法或用中心對稱等方法說明),
此時QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.
故t=
.
(3)①當(dāng)點P在EF上(2
≤t≤5)時,
如圖2,QB=4t,DE+EP=7t,
由△PQE∽△BCA,得
.
∴t=4
;
②當(dāng)點P在FC上(5≤t≤7
)時,
如圖3,已知QB=4t,從而PB=5t,
由PF=7t-35,BF=20,得5t=7t-35+20.
解得t=7
;
(4)如圖4,t=1
;如圖5,t=7
.
(注:判斷PG∥AB可分為以下幾種情形:
當(dāng)0<t≤2
時,點P下行,點G上行,可知其中存在PG∥AB的時刻,
如圖4;此后,點G繼續(xù)上行到點F時,t=4,而點P卻在下行到點E再沿EF上行,發(fā)現(xiàn)點P在EF上運動時不存在PG∥AB;
當(dāng)5≤t≤7
時,點P,G均在FC上,也不存在,
PG∥AB;由于點P比點G先到達(dá)點C并繼續(xù)沿CD下行,所以在
7
<t<8中存在PG∥AB的時刻,
如圖5,當(dāng)8≤t≤10時,點P,G均在CD上,不存在PG∥AB).
分析:(1)由中位線定理即可求出DF的長;
(2)連接DF,過點F作FH⊥AB于點H,由四邊形CDEF為矩形,QK把矩形CDEF分為面積相等的兩部分,根據(jù)△HBF∽△CBA,對應(yīng)邊的比相等,就可以求得t的值;
(3)①當(dāng)點P在EF上(2
≤t≤5時根據(jù)△PQE∽△BCA,根據(jù)相似三角形的對應(yīng)邊的比相等,可以求出t的值;
②當(dāng)點P在FC上(5≤t≤7
)時,PB+PF=BF就可以得到;
(4)當(dāng)PG∥AB時四邊形PHQG是矩形,由此可以直接寫出t.
點評:此題主要考查了相似三角形的判定與性質(zhì),運用了相似三角形性質(zhì),對應(yīng)邊的比相等,正確找出題目中的相似三角形是解題的關(guān)鍵.