⊙O1與⊙O2外切,且它們的半徑分別是方程x2-4x+3=0的兩根,則兩圓的圓心距為


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
C
分析:因?yàn)椤袿1與⊙O2外切,所以兩圓的圓心距為兩圓的半徑之和,解方程x2-4x+3=0求兩根之和即可.
解答:設(shè)⊙O1與⊙O2的半徑分別為r1、r2,即方程x2-4x+3=0的兩根分別為α、β,
∵⊙O1與⊙O2外切,
∴兩圓的圓心距為兩圓的半徑之和,
又∵⊙O1與⊙O2的半徑分別是方程x2-4x+3=0的兩根,
∴r1+r2=α+β=4.故選C.
點(diǎn)評(píng):考查一元二次方程根與系數(shù)的關(guān)系和圓與圓的位置關(guān)系,同時(shí)考查綜合應(yīng)用能力及推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O1與⊙O2外切于點(diǎn)C,⊙O1與⊙O2的連心線與外公切線相交于點(diǎn)P,外精英家教網(wǎng)公切線與兩圓的切點(diǎn)分別為A、B,且AC=4,BC=5.
(1)求線段AB的長(zhǎng);
(2)證明:PC2=PA•PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

29、已知⊙O1與⊙O2外切,它們的半徑分別為2和3,則圓心距O1O2的長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,半徑為2的兩個(gè)等圓⊙O1與⊙O2外切于點(diǎn)P,過(guò)O1作⊙O2的兩條切線,切點(diǎn)分別為A,B,與⊙O1分別交于C,D,則APB與CPD的弧長(zhǎng)之和為( 。
A、2π
B、
3
2
π
C、π
D、
1
2
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、如圖,已知⊙O1的半徑為t,t的半徑為2,圓心距O1O2=4.現(xiàn)把⊙O1沿直線O1O2平移,使⊙O1與⊙O2外切,則⊙O1平移的距離為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:⊙O1與⊙O2外切于點(diǎn)O,以直線O1O2為x軸,點(diǎn)O為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,直線AB精英家教網(wǎng)切⊙O1于點(diǎn)B,切⊙O2于點(diǎn)A,交y軸于點(diǎn)C(0,2),交x軸于點(diǎn)M.BO的延長(zhǎng)線交⊙O2于點(diǎn)D,且OB:OD=1:3.
(1)求⊙O2半徑的長(zhǎng);
(2)求線段AB的解析式;
(3)在直線AB上是否存在點(diǎn)P,使△MO2P與△MOB相似?若存在,求出點(diǎn)P的坐標(biāo)與此時(shí)k=
S△MO2P
S
 
△MOB
的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案