解:(1)由三角形的三邊關(guān)系知,AC-BC<AB<AC+BC,
即:8-2<AB<8+2,∴6<AB<10,
又∵△ABC的周長為奇數(shù),而AC、BC為偶數(shù),
∴AB為奇數(shù),故AB=7或9;
(2)∵AC-BC=5,
∴AC、BC中一個奇數(shù)、一個偶數(shù),
又∵△ABC的周長為奇數(shù),故AB為偶數(shù),
AB>AC-BC=5,得AB的最小值為6;
(3)存在.由A(-2,1),B(6,1)兩點坐標(biāo)可知:AB∥x軸,且AB=6-(-2)=8,
而△ABP的面積為16,由三角形計算面積公式可知,點P到AB的距離為4,
即P點縱坐標(biāo)為5或-3,又P點在第一、三象限角平分線上,故P點坐標(biāo)為(5,5)或(-3,-3).
分析:(1)由三角形的三邊關(guān)系知,AC-BC<AB<AC+BC,△ABC的周長為奇數(shù),而AC、BC為偶數(shù),故AB為奇數(shù),在范圍內(nèi)求奇數(shù)AB的值;
(2)根據(jù)AC-BC=5可知:AC、BC中一個奇數(shù)、一個偶數(shù),又△ABC的周長為奇數(shù),故AB為偶數(shù),再根據(jù)AC-BC<AB<AC+BC,求AB的最小值;
(3)存在.因為A(-2,1),B(6,1)兩點在平行于x軸的直線上,且AB=6-(-2)=8,而△ABP的面積為16,由三角形計算面積公式可知,點P到AB的距離為4,又P點在第一、三象限角平分線上,由此可求P點坐標(biāo).
點評:本題考查了構(gòu)成三角形邊的條件的運用,數(shù)的奇偶性分析及坐標(biāo)系中求三角形面積的問題.