【題目】如圖,已知∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分別為D、E.(這幾何模型具備“一線三直角”)如下圖:
(1)①請你證明:△ACE≌△CBD;②若AE=3,BD=5,求DE的長;
(2)遷移:如圖:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分別是邊BC,AC上的點,將DE繞點D順時針旋轉90°,點E剛好落在邊AB上的點F處,則CE=________。(不要求寫過程)
【答案】(1)①見解析;②DE=8;(2)CE=1.
【解析】
(1)如圖1,根據(jù)垂直的定義和同角的余角相等得到∠E=∠D=90°,∠1=∠2,則結合已知條件AC=BC由AAS證得:△ACE≌△CBD;②如圖2,同(1),證得△ACE≌△CBD,則根據(jù)全等三角形的對應邊相等推知:CE=BD=4,AE=CD=2,故DE=CE﹣CD=4﹣2=2.(2) 過F作FM⊥BC于M,求出BM=MF,求出∠C=∠FMD,∠CED=∠MDF,證△CED≌△MDF,推出DM=CE,CD=FM=2即可.
(1)證明:如圖1,∵BD⊥DE,AE⊥DE,
∴∠E=∠D=90°.
又∵∠ACB=90°,
∴∠1=∠2,
∴在△ACE與△CBD中,,
∴△ACE≌△CBD(AAS);
②解:如圖2,同(1),證得△ACE≌△CBD,
∴CE=BD=5,AE=CD=3,
∴DE=CE+CD=5+3=8.
(2)過F作FM⊥BC于M,
則∠FMB=∠FMD=90°,
∵∠C=90,AC=BC,
∴∠B=∠A=45°,
∴∠MFB=∠B=45°,
∴BM=MF,
∵DE⊥DF,
∴∠EDF=∠FMD=∠C=90°,
∴∠CED+∠CDE=90,∠CDE+∠FDM=90°,
∴∠CED=∠FDM,
在△CED和△MDF中,
,
∴△CED≌△MDF(AAS),
∵CD=2,BD=3,
∴DM=CE,CD=FM=2=BM,
∴CE=DM=32=1,
故答案為:1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,AD⊥BC于點D,BE⊥AC于點E,且DF=DC。
(1)求證:BD=AD;
(2)若AF=1,DC=3,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】⑴ 閱讀理解:我們知道在直角三角形中,有無數(shù)組勾股數(shù),例如:5、12、13;9、40、41;……但其中也有一些特殊的勾股數(shù),例如:3、4、5;是三個連續(xù)正整數(shù)組成的勾股數(shù).
解決問題:① 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)偶數(shù)能組成勾股數(shù)?
答: ,若存在,試寫出一組勾股數(shù): .
② 在無數(shù)組勾股數(shù)中,是否還存在其它的三個連續(xù)正整數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.
③ 在無數(shù)組勾股數(shù)中,是否存在三個連續(xù)奇數(shù)能組成勾股數(shù)?若存在,求出勾股數(shù),若不存在,說明理由.
⑵ 探索升華:是否存在銳角△ABC三邊也為連續(xù)正整數(shù);且同時還滿足:∠B>∠C>∠A;∠ABC=2∠BAC?若存在,求出△ABC三邊的長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線C1:y=ax2+4x+4a(0<a<2)
(1)當C1與x軸有唯一一個交點時,求此時C1的解析式;
(2)如圖①,若A(1,yA),B(0,yB),C(﹣1,yC)三點均在C1上,連BC作AE∥BC交拋物線C1于E,求點E到y(tǒng)軸的距離;
(3)若a=1,將拋物線C1先向右平移3個單位,再向下平移2個單位得到拋物線C2 , 如圖②,拋物線C2與x軸相交于點M、N(M點在N點的左邊),拋物線的對稱軸交x軸于點F,過點F的直線l與拋物線C2相交于P,Q(P在第四象限)且S△FMQ=2S△FNP , 求直線l的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D為BC上一點,以AD為腰作等腰△ADE,AD=AE,∠BAC=∠DAE,連接CE.
(1)求證:BD=CE;
(2)已知BC=8,∠BAC=∠DAE=30°,若△DCE的面積為1,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,AD⊥BC于點D.點P在邊AB上運動,過點P作PE∥BC,與邊AC交于點E,連接ED,以PE、ED為鄰邊作平行四邊形PEDF.設線段AP的長為x(0<x<6).
(1)求線段PE的長.(用含x的代數(shù)式表示)
(2)當四邊形PEDF為菱形時,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關于軸對稱的.
(2)寫出點的坐標(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從﹣3,﹣1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,恰好使關于x,y的二元一次方程組 有整數(shù)解,且點(a,b)落在雙曲線 上的概率是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com