如圖,把一個斜邊長為2且含有角的直角三角板ABC繞直角頂點(diǎn)C順時針旋轉(zhuǎn),則在旋轉(zhuǎn)過程中這個三角板掃過的圖形的面積是(       )
A.πB.C.D.
D  
因?yàn)樾D(zhuǎn)過程中這個三角板掃過的圖形的面積分為三部分扇形ACA、 BCD和三角形ACD 計(jì)算即可。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知正方形中,繞點(diǎn)沿順時針方向旋轉(zhuǎn),它的
兩邊分別交(或它們的延長線)于點(diǎn)繞點(diǎn)旋轉(zhuǎn)到時(如圖28①), 易證

(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(如圖28②),線段之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖28③所示的位置時,線段之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.(9分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖形中既是軸對稱圖形又是中心對稱圖形的是         (   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直角三角板ABC的斜邊AB=12㎝,∠A=30°,將三角板ABC繞C順時針旋轉(zhuǎn)90°至三角板的位置后,再沿CB方向向左平移,使點(diǎn)落在原三角板ABC的斜邊AB上,則三角板平移的距離為【   】
A.6㎝B.4㎝C.(6-)㎝D.()㎝

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料:
例:說明代數(shù)式 x2+1 + (x-3)2+4 的幾何意義,并求它的最小值.
解: x2+1 + (x-3)2+4 =" (x-0)2+12" + (x-3)2+22 ,如圖,建立平面直角坐標(biāo)系,點(diǎn)P(x,0)是x軸上一點(diǎn),則 (x-0)2+12 可以看成點(diǎn)P與點(diǎn)A(0,1)的距離, (x-3)2+22 可以看成點(diǎn)P與點(diǎn)B(3,2)的距離,所以原代數(shù)式的值可以看成線段PA與PB長度之和,它的最小值就是PA+PB的最小值.
設(shè)點(diǎn)A關(guān)于x軸的對稱點(diǎn)為A′,則PA=PA′,因此,求PA+PB的最小值,只需求PA′+PB的最小值,而點(diǎn)A′、B間的直線段距離最短,所以PA′+PB的最小值為線段A′B的長度.為此,構(gòu)造直角三角形A′CB,因?yàn)锳′C=3,CB=3,所以A′B="3" 2 ,即原式的最小值為3 2 .

根據(jù)以上閱讀材料,解答下列問題:
(1)代數(shù)式 (x-1)2+1 + (x-2)2+9 的值可以看成平面直角坐標(biāo)系中點(diǎn)P(x,0)與點(diǎn)A(1,1)、點(diǎn)B (2,3)的距離之和.(填寫點(diǎn)B的坐標(biāo))
(2)代數(shù)式 x2+49 + x2-12x+37 的最小值為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列幾種圖案中,是軸對稱圖形的有(      )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列圖案中是中心對稱圖形但不是軸對稱圖形的是【   】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC在如圖所示的平面直角坐標(biāo)系中, 將其平移后得△A′B′C′, 若B的對應(yīng)點(diǎn)B’的坐標(biāo)是(4,1).
①在圖中畫出△A′B′C′;
② 此次平移可看作將△ABC向_____平移了_____個單位長度, 再向_____平移了_____個單位長度得△A′B′C′;
③△A’B’C’的面積為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,,P是內(nèi)任意一點(diǎn),、分別是點(diǎn)P關(guān)于OA、OB的對稱點(diǎn),連接與OA、OB分別交于點(diǎn)C、D,若 的周長是________,________.

查看答案和解析>>

同步練習(xí)冊答案