如圖,AB=CD,點(diǎn)E、F分別是BC、AD中點(diǎn),延長BA,CD分別與EF的延長線交于點(diǎn)P、Q,則BP與CQ的大小關(guān)系是BP      CQ(填“>”“<”“=”) 。
=

試題分析:連接BD,取BD的中點(diǎn)M,連接EM、FM,延長QE到點(diǎn)O,使QE=OE,則可證得△BOE≌△COQ,所以BO=CQ,∠O=∠CQF,根據(jù)三角形的中位線性質(zhì)可得FM//AB且FM=AB,EM//CD且EM=CD,再結(jié)合AB=CD可得EM=FM,即可證得∠MEF=∠MFE,再根據(jù)平行線的性質(zhì)可得∠BPF=∠CQF,問題得證.
連接BD,取BD的中點(diǎn)M,連接EM、FM,延長QE到點(diǎn)O,使QE=OE,

則可證得△BOE≌△COQ
所以BO=CQ,∠O=∠CQF
因?yàn)镕是AD的中點(diǎn)
所以FM是△ABD的中位線
所以FM//AB且FM=AB
同理EM//CD且EM=CD
因?yàn)锳B=CD
所以EM=FM
所以∠MEF=∠MFE
因?yàn)椤螧PF=∠MFE,∠CQF=∠MEF
所以∠BPF=∠CQF
因?yàn)椤螼=∠CQF
所以∠BPF=∠O
所以BP=BO
因?yàn)锽O=CQ
所以BP=CQ.
點(diǎn)評(píng):解題的關(guān)鍵是熟記三角形的中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

“斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等”,類似地,可以得到“滿足    的兩個(gè)直角三角形相似”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

把一張形狀是矩形的紙片剪去其中某一個(gè)角,剩下的部分是一個(gè)多邊形,則這個(gè)多邊形的內(nèi)角和不可能是(  )。
A.720°B.540°C.360°D.180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC中,∠C=90º,D是AB上一點(diǎn),DE⊥CD于D,交BC于E,且有AC=AD=CE。求證:

(1)∠ACD=∠CED
(2)DE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知有一張三角形紙片ABC的一邊AB=10,若D為AB邊上的點(diǎn),過點(diǎn)D作DE//BC交AC于點(diǎn)E,分別過點(diǎn)D、E作DF⊥BC,EG⊥BC,垂足分別為點(diǎn)F、點(diǎn)G,把三角形紙片ABC分別沿DE、DF、EG按圖1方式折疊,點(diǎn)A、B、C分別落在A´、B´、C´處.若A´、B´、C´在矩形DFGE內(nèi)或者其邊上,且互不重合,此時(shí)我們稱△A´B´C´(即圖中陰影部分)為“重疊三角形”.

(1)實(shí)驗(yàn)操作:當(dāng)AD=4時(shí),①若∠A=90°,AB=AC,請?jiān)趫D2中畫出“重疊三角形”,= ; 
②若AB=AC,BC=12,如圖3,= ;③若∠B=30°,∠C=45°,如圖4,= ;                     
(2)實(shí)驗(yàn)探究:若△ABC為等邊三角形(如圖5),設(shè)AD的長為m,若重疊三角形A´B´C´存在,試用含m的代數(shù)式表示重疊三角形A´B´C´的面積,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下結(jié)論:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正確的有(   ).
A.1個(gè)B.2個(gè)C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上,若BC=80,AD=60,PN=2PQ,求矩形PQMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,若三角形ABC的邊長為1,AE=2,則CD的長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)正多邊形的每個(gè)外角為15°,則這個(gè)正多邊形的邊數(shù)為     

查看答案和解析>>

同步練習(xí)冊答案