(2010•楚雄州)已知:如圖,拋物線y=ax2+bx+c與x軸相交于兩點A(1,0),B(3,0),與y軸相交于點C(0,3).
(1)求拋物線的函數(shù)關(guān)系式;
(2)若點D(,m)是拋物線y=ax2+bx+c上的一點,請求出m的值,并求出此時△ABD的面積.

【答案】分析:(1)將A、B、C三點坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值,從而確定該二次函數(shù)的解析式;
(2)將D點坐標(biāo)代入拋物線的解析式中,即可求出m的值;以AB為底,D點縱坐標(biāo)的絕對值為高,即可求出△ABD的面積.
解答:解:
(1)由已知得,(3分)
解之得,(4分)
∴y=x2-4x+3;(5分)

(2)∵是拋物線y=x2-4x+3上的點,
;(6分)
.(8分)
點評:此題主要考查了二次函數(shù)解析式的確定以及三角形面積求法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2010•楚雄州)已知:如圖,⊙A與y軸交于C、D兩點,圓心A的坐標(biāo)為(1,0),⊙A的半徑為,過點C作⊙A的切線交x軸于點B(-4,0).

(1)求切線BC的解析式;
(2)若點P是第一象限內(nèi)⊙A上的一點,過點P作⊙A的切線與直線BC相交于點G,且∠CGP=120°,求點G的坐標(biāo);
(3)向左移動⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動過程中是否存在點A,使△AEF是直角三角形?若存在,求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•楚雄州)已知:如圖,⊙A與y軸交于C、D兩點,圓心A的坐標(biāo)為(1,0),⊙A的半徑為,過點C作⊙A的切線交x軸于點B(-4,0).

(1)求切線BC的解析式;
(2)若點P是第一象限內(nèi)⊙A上的一點,過點P作⊙A的切線與直線BC相交于點G,且∠CGP=120°,求點G的坐標(biāo);
(3)向左移動⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動過程中是否存在點A,使△AEF是直角三角形?若存在,求出點A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2010•楚雄州)點(-2,3)在反比例函數(shù)的圖象上,則這個反比例函數(shù)的表達式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省楚雄州中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•楚雄州)點(-2,3)在反比例函數(shù)的圖象上,則這個反比例函數(shù)的表達式為   

查看答案和解析>>

同步練習(xí)冊答案