我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”。如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”。其中∠B=∠C。
(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個(gè)頂點(diǎn)引一條直線將四邊形ABCD分割成一個(gè)等腰梯形和一個(gè)三角形或分割成一個(gè)等腰三角形和一個(gè)梯形(畫出一種示意圖即可)。
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:
(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(shí)(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時(shí),情況又將如何?寫出你的結(jié)論(不必說明理由)
見解析
【解析】解:(1)作圖如下:(畫出一種示意圖即可,答案不唯一)
(2)證明:∵AE∥DC,∴∠AEB=∠C。
又∵AB∥DE,∴∠B=∠DEC!唷鰽BE∽△DCE。
∴。
又∵∠B=∠C,∴∠B=∠AEB!郃B=AE。
∴。
(3)如圖,過點(diǎn)E分別作EF⊥AB,EG⊥AD,AH⊥CD,垂足分別 是F,G,H,
∵AE平分∠BAD,∴EF=EG。
又∵ED平分∠BAD,∴EG=EH。∴EF= EH。
又∵EB=EC,∴Rt△BEF≌Rt△CEF(HL)!3=∠4。
又∵EB=EC,∴∠1=∠2。
∴∠1+∠3=∠2+∠4,即∠ABC=∠DCB。
∴四邊形ABCD是 “準(zhǔn)等腰梯形”。
當(dāng)點(diǎn)E不在四邊形ABCD內(nèi)部時(shí),有兩種情況:
當(dāng)點(diǎn)E在四邊形ABCD的邊BC上時(shí),四邊形ABCD仍為 “準(zhǔn)等腰梯形”;
當(dāng)點(diǎn)E在四邊形ABCD的外部時(shí),四邊形ABCD仍為 “準(zhǔn)等腰梯形”。
(1)根據(jù)平行線的性質(zhì),過點(diǎn)D作BC的平行線或點(diǎn)D作PB的平行線或點(diǎn)A作PC的平行線,都能線將四邊形ABCD分割成一個(gè)等腰梯形和一個(gè)三角形或分割成一個(gè)等腰三角形和一個(gè)梯形,作法不唯一。
(2)易證△ABE∽△DCE,可得,由∠B=∠C可證得AB=AE,從而得證。
(3)過點(diǎn)E分別作EF⊥AB,EG⊥AD,AH⊥CD,垂足分別 是F,G,H,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),可得EF=EG= EH,從而可由HL證得 Rt△BEF≌Rt△CEF,從而∠3=∠4;由EB=EC,得∠1=∠2,根據(jù)等量加等量和相等,得∠ABC=∠DCB,即四邊形ABCD是 “準(zhǔn)等腰梯形”。
分點(diǎn)E在四邊形ABCD的邊BC上和點(diǎn)E在四邊形ABCD的外部兩種情況研究。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
AB |
DC |
BE |
EC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年安徽省高級中等學(xué)校招生考試數(shù)學(xué) 題型:044
我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”.如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”.其中∠B=∠C.
(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個(gè)頂點(diǎn)引一條直線將四邊形ABCD分割成一個(gè)等腰梯形和一個(gè)三角形或分割成一個(gè)等腰三角形和一個(gè)梯形(畫出一種示意圖即可).
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:
(3)在由不平行于BC的直線截△PBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(shí)(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時(shí),情況又將如何?寫出你的結(jié)論(不必說明理由)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(安徽卷)數(shù)學(xué)(帶解析) 題型:解答題
我們把由不平行于底邊的直線截等腰三角形的兩腰所得的四邊形稱為“準(zhǔn)等腰梯形”。如圖1,四邊形ABCD即為“準(zhǔn)等腰梯形”。其中∠B=∠C。
(1)在圖1所示的“準(zhǔn)等腰梯形”ABCD中,選擇合適的一個(gè)頂點(diǎn)引一條直線將四邊形ABCD分割成一個(gè)等腰梯形和一個(gè)三角形或分割成一個(gè)等腰三角形和一個(gè)梯形(畫出一種示意圖即可)。
(2)如圖2,在“準(zhǔn)等腰梯形”ABCD中,∠B=∠C,E為邊BC上一點(diǎn),若AB∥DE,AE∥DC,求證:
(3)在由不平行于BC的直線截ΔPBC所得的四邊形ABCD中,∠BAD與∠ADC的平分線交于點(diǎn)E,若EB=EC,請問當(dāng)點(diǎn)E在四邊形ABCD內(nèi)部時(shí)(即圖3所示情形),四邊形ABCD是不是“準(zhǔn)等腰梯形”,為什么?若點(diǎn)E不在四邊形ABCD內(nèi)部時(shí),情況又將如何?寫出你的結(jié)論(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年安徽省中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com