【題目】如圖,△ABC為等邊三角形,AB=8,AD⊥BC,點E為線段AD上的動點,連接CE,以CE為邊作等邊△CEF,連接DF,則線段DF的最小值為( 。
A.B.4C.2D.無法確定
【答案】C
【解析】
連接BF,由等邊三角形的性質(zhì)可得三角形全等的條件,從而可證△BCF≌△ACE,推出∠CBF=∠CAE=30°,再由垂線段最短可知當DF⊥BF時,DF值最小,利用含30°的直角三角形的性質(zhì)定理可求DF的值.
如圖,連接BF,
∵△ABC為等邊三角形,AD⊥BC,AB=8,
∴BC=AC=AB=8,BD=DC=4,∠BAC=∠ACB=60°,∠CAE=30°,
∵△CEF為等邊三角形,
∴CF=CE,∠FCE=60°,
∴∠FCE=∠ACB,
∴∠BCF=∠ACE,
∴在△BCF和△ACE中,
,
∴△BCF≌△ACE(SAS),
∴∠CBF=∠CAE=30°,AE=BF,
∴當DF⊥BF時,DF值最小,
此時∠BFD=90°,∠CBF=30°,BD=4,
∴DF=2,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設點P、Q運動的時間為ts.
當t為何值時,四邊形ABQP是矩形;
當t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一個內(nèi)角為60°的菱形 ABCD中,AB=2,點P以每秒1cm的速度從點A出發(fā),沿AD→DC的路徑運動,到點C停止,過點P 作PQ⊥BD,PQ 與邊AD(或邊CD)交于點Q,△ABQ的面積y(cm2)與點P 的運動時間x(秒)的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB//EF,∠2=2∠1
(1)證明∠FEC=∠FCE;
(2)如圖2,M為AC上一點,N為FE延長線上一點,且∠FNM=∠FMN,則∠NMC與∠CFM有何數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連結OE.下列結論:
①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結論有______.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:
①的解x= .
②的解x= .
③的解x= .
④的解x= .
…
(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出⑤,⑥個方程及它們的解.
(2)請你用一個含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE∥AC交CB的延長線于E.
(1)求證:DE是⊙O的切線;
(2)若∠A=30°,求證:BD=BC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com