(1)用因式分解法解方程:x(x+1)=2(x+1).
(2)已知二次函數(shù)的解析式為y=x2-4x-5,請(qǐng)你判斷此二次函數(shù)的圖象與x軸交點(diǎn)的個(gè)數(shù);并指出當(dāng)y隨x的增大而增大時(shí)自變量x的取值范圍.
分析:(1)首先移項(xiàng),再提取公因式(x+1),進(jìn)而分解因式,解方程即可;
(2)直接利用因式分解法解一元二次方程,進(jìn)而得出二次函數(shù)的圖象與x軸交坐標(biāo),即可得出對(duì)稱軸和y隨x的增大而增大時(shí)自變量x的取值范圍.
解答:(1)解:x(x+1)-2(x+1)=0.
(x+1)(x-2)=0. 
∴x1=-1,x2=2.

(2)解方程x2-4x-5=0,
得x1=-1,x2=5. 
故二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn).
∵拋物線的開(kāi)口向上,對(duì)稱軸為直線x=
-1+5
2
=2,
∴當(dāng)y隨x的增大而增大時(shí)自變量x的取值范圍是:x≥2
點(diǎn)評(píng):本題考查了因式分解法解一元二次方程以及二次函數(shù)的有關(guān)性質(zhì),得出二次函數(shù)對(duì)稱軸再利用函數(shù)圖象得出x的取值范圍是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)用配方法解方程:(x-2)2=-20+10x
(2)用因式分解法解方程:(x+2)2=(2x-3)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、用因式分解法解下列方程:
(1)x2+16x=0;
(2)5x2-10x=-5;
(3)x(x-3)+x-3=0;
(4)2(x-3)2=9-x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用因式分解法解一元二次方程x(x-1)-2(1-x)=0,正確的步驟是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用因式分解法解下列方程:
(1)
14
x2
-9=0;
(2)(x-5)2=2(x-5)-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用因式分解法解下列方程:
(1)(4x-1)(5x+7)=0.
(2)3x(x-1)=2-2x.
(3)(2x+3)2=4(2x+3).
(4)2(x-3)2=x2-9.

查看答案和解析>>

同步練習(xí)冊(cè)答案