【題目】四座城市A,B,C,D分別位于一個邊長100km的大正方形的四個頂點,由于各城市之間的商業(yè)往來日益頻繁,于是政府決定修建公路網(wǎng)連接它們,根據(jù)實際,公路總長設計得越短越好,公開招標的信息發(fā)布后,一個又一個方案被提交上來,經(jīng)過初審后,擬從下面四個方案中選定一個再進一步認證,其中符合要求的方案是( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直線AB的函數(shù)解析式為y=-2x+8,與x軸交于點A,與y軸交于點B.
(1)求A、B兩點的坐標;
(2)若點P(m,n)為線段AB上的一個動點(與A、B不重合),作PE⊥x軸于點E,PF⊥y軸于點F,連接EF,若△PEF的面積為S,求S關于m的函數(shù)關系式,并寫出m的取值范圍;
(3)以上(2)中的函數(shù)圖象是一條直線嗎?請嘗試作圖驗證.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,在平面內(nèi),如果一個圖形繞著一個定點旋轉一定的角度后能與自身重合,那么就稱這個圖形是旋轉對稱圖形,轉的這個角稱為這個圖形的一個旋轉角.例如,正方形繞著它的對角線的交點旋轉后能與自身重合所以正方形是旋轉對稱圖形,它有一個旋轉角為.
判斷下列說法是否正確(在相應橫線里填上“對”或“錯”)
①正五邊形是旋轉對稱圖形,它有一個旋轉角為.________
②長方形是旋轉對稱圖形,它有一個旋轉角為.________
填空:下列圖形中時旋轉對稱圖形,且有一個旋轉角為的是________.(寫出所有正確結論的序號)
①正三角形②正方形③正六邊形④正八邊形
寫出兩個多邊形,它們都是旋轉對稱圖形,都有一個旋轉角為,其中一個是軸對稱圖形,但不是中心對稱圖形;另一個既是軸對稱圖形,又是中心對稱圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC 中,∠BAC=θ.邊 AB 的垂直平分線交邊 BC 于點 D,邊 AC的垂直平分線交邊BC于點 E,連結 AD,AE,則∠DAE 的度數(shù)為_____.(用含θ 的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中, AD⊥BC,EF垂直平分AC,交AC于點F,交BC于點E,且AE=AB.
(1)若∠BAE=40°,求∠C的度數(shù);
(2)若△ABC周長26cm,AC=10cm,求DC長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為6cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以π cm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當點P運動的時間為______時,BP與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:小明同學進入初二以后,讀書越發(fā)認真.
在學習“用因式分解法解方程”時,課后習題中有這樣一個問題:
下列方程的解法對不對?為什么?
解:或.
解得或.
所以,.
同學們都認為不對,原因:有的說該題的因式分解是錯誤的;有的說將答案代入方程,方程左右兩邊不成立,等等.
小明同學除了認為該解法不正確,還給出了一種因式分解的做法,小明同學的做法如下:
取與的平均值,即將與相加再除以2.
那么原方程可化為.
左邊用平方差公式可化為.
再移項,開平方可得
請你認真閱讀小明同學的方法,并用這個方法推導:
關于的方程的求根公式(此時).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關系,其部分圖象如圖所示.
(1)求y關于x的函數(shù)關系式;(不需要寫定義域)
(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com