已知,如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)P,過點(diǎn)P的直線交⊙O1于點(diǎn)D,交⊙O2于點(diǎn)E;DA與⊙O2相切,切點(diǎn)為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長(zhǎng).

(1)證明:過點(diǎn)P作兩圓的公切線PT.
∴∠TPC=∠4,∠3=∠D,
∵∠4=∠D+∠5,
∴∠2+∠3=∠D+∠5.
∴∠2=∠5.
又∵DA與⊙O相切于點(diǎn)C,
∴∠5=∠1,
∴∠1=∠2,
∴PC平分∠APD;

(2)解:∵DA與⊙O2相切于點(diǎn)C,
∴∠PCA=∠4,
由(1)知∠2=∠1.
∴△PCA∽△PEC.

即PC2=PA•PE.
∵PE=3,PA=6,
∴PC2=18,
∴PC=
分析:(1)首先過點(diǎn)P作兩圓的公切線PT,由弦切角定理,可得∠TPC=∠4,∠3=∠D,又由三角形外角的性質(zhì),易證得∠2=∠5,又由DA與⊙O2相切,切點(diǎn)為C,可得∠5=∠1,繼而可得PC平分∠APD;
(2)首先證得△PCA∽△PEC,然后由相似三角形的對(duì)應(yīng)邊成比例,證得PC2=PA•PE,繼而求得答案.
點(diǎn)評(píng):此題考查了相切圓的性質(zhì)、弦切角定理、相似三角形的判定與性質(zhì)以及角平分線的定義.此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1和⊙O2相交于A、B兩點(diǎn),經(jīng)過A的直線CD與⊙O1交于點(diǎn)C、與⊙O2交于點(diǎn)D,經(jīng)過點(diǎn)B的直線EF與⊙O1交于點(diǎn)E、與⊙O2交于點(diǎn)F,連接CE、DF.若∠AO1E=100°,則∠D的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O1和⊙O2外切于點(diǎn)A,直線BD切⊙O1于點(diǎn)B,交⊙O2于點(diǎn)C、D,直線DA交⊙精英家教網(wǎng)O1于點(diǎn)E.
(1)求證:∠BAC=∠ABC+∠D;
(2)求證:AB2=AC•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、已知:如圖,⊙O1和⊙O2相交于A、B兩點(diǎn),動(dòng)點(diǎn)P在⊙O2上,且在⊙1外,直線PA、PB分別交⊙O1于C、D,問:⊙O1的弦CD的長(zhǎng)是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化?如果發(fā)生變化,請(qǐng)你確定CD最長(zhǎng)和最短時(shí)P的位置,如果不發(fā)生變化,請(qǐng)你給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O1和⊙O2相交于A、B兩點(diǎn),過B點(diǎn)作⊙O1的切線交⊙O2于D點(diǎn),連接DA并延精英家教網(wǎng)長(zhǎng)⊙O1相交于C點(diǎn),連接BC,過A點(diǎn)作AE∥BC與⊙O相交于E點(diǎn),與BD相交于F點(diǎn).
(1)求證:EF•BC=DE•AC;
(2)若AD=3,AC=1,AF=
3
,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黃岡)已知,如圖,⊙O1和⊙O2內(nèi)切于點(diǎn)P,過點(diǎn)P的直線交⊙O1于點(diǎn)D,交⊙O2于點(diǎn)E;DA與⊙O2相切,切點(diǎn)為C.
(1)求證:PC平分∠APD;
(2)PE=3,PA=6,求PC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案