【題目】為確保信息安全,在傳輸時(shí)往往需加密,發(fā)送方發(fā)出一組密碼a,b,c時(shí),則接收方對(duì)應(yīng)收到的密碼為A,B,C.雙方約定:A=2a﹣b,B=2b,C=b+c,例如發(fā)出1,2,3,則收到0,4,5
(1)當(dāng)發(fā)送方發(fā)出一組密碼為2,3,5時(shí),則接收方收到的密碼是多少?
(2)當(dāng)接收方收到一組密碼2,8,11時(shí),則發(fā)送方發(fā)出的密碼是多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+3x+m的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn)
(1)求m的值及C點(diǎn)坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由
(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對(duì)稱點(diǎn)為Q
①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)P的橫坐標(biāo)為t(0<t<4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】重慶市2017年女子迷你馬拉松比賽在南濱路舉行,王老師和劉老師參加了比賽,圖中AB、OC分別表示王老師和劉老師前往終點(diǎn)所跑的路程S(km)隨時(shí)間t(min)變化的函數(shù)圖象,以下說(shuō)法:①這是全長(zhǎng)為5km的比賽;②王老師比劉老師早15分鐘到達(dá)終點(diǎn);③王老師出發(fā)15分鐘時(shí)遇到劉老師;④王老師的平均速度為500米/分鐘.其中正確的有( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB為直徑,D、E為圓上兩點(diǎn),C為圓外一點(diǎn),且∠E+∠C=90°.
(1)求證:BC為⊙O的切線.
(2)若sinA= ,BC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的內(nèi)角∠BAD、∠CDA的角平分線交于點(diǎn)E,∠ABC、∠BCD的角平分線交于點(diǎn)F.
(1)若∠F=70°,則∠ABC+∠BCD= ______ °;∠E= ______ °;
(2)探索∠E與∠F有怎樣的數(shù)量關(guān)系,并說(shuō)明理由;
(3)給四邊形ABCD添加一個(gè)條件,使得∠E=∠F,所添加的條件為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=AC,AD=AE,BE、CE相交于點(diǎn)F,則圖中全等三角形共有( 。⿲(duì).
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=5x+5交x軸于點(diǎn)A,交y軸于點(diǎn)C,過(guò)A,C兩點(diǎn)的二次函數(shù)y=ax2+4x+c的圖象交x軸于另一點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)連接BC,點(diǎn)N是線段BC上的動(dòng)點(diǎn),作ND⊥x軸交二次函數(shù)的圖象于點(diǎn)D,求線段ND長(zhǎng)度的最大值;
(3)若點(diǎn)H為二次函數(shù)y=ax2+4x+c圖象的頂點(diǎn),點(diǎn)M(4,m)是該二次函數(shù)圖象上一點(diǎn),在x軸、y軸上分別找點(diǎn)F,E,使四邊形HEFM的周長(zhǎng)最小,求出點(diǎn)F,E的坐標(biāo).
溫馨提示:在直角坐標(biāo)系中,若點(diǎn)P,Q的坐標(biāo)分別為P(x1 , y1),Q(x2 , y2),
當(dāng)PQ平行x軸時(shí),線段PQ的長(zhǎng)度可由公式PQ=|x1﹣x2|求出;
當(dāng)PQ平行y軸時(shí),線段PQ的長(zhǎng)度可由公式PQ=|y1﹣y2|求出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列條件中,不能判定直線a與b平行的是( )
A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com