如圖,AB是⊙O直徑,CB是⊙O的切線,切點為B,OC平行于弦AD.
求證:DC是⊙O的切線.

【答案】分析:連接OD,只要證明CD⊥OD即可.
解答:證明:連接OD;
∵OA=OD,
∴∠A=∠ADO.
∵AD∥OC,
∴∠A=∠BOC,∠ADO=∠COD.
∴∠BOC=∠COD.
∵OB=OD,OC=OC,
∴△OBC≌△ODC.
∴∠OBC=∠ODC,又BC是⊙O的切線.
∴∠OBC=90°.
∴∠ODC=90°.
∴DC是⊙O的切線.
點評:本題考查切線的性質(zhì)和判定及圓周角定理的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O直徑,D為⊙O上一點,AT平分∠BAD交⊙O于點T,過T作AD的垂線交AD的延長線于點C.
(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=
3
,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O直徑,BC是弦,OD⊥BC于E交弧BC于D.根據(jù)中考改編
(1)請寫出四個不同類型的正確結(jié)論;
(2)連接CD、DB設(shè)∠CDB=α,∠ABC=β,你認為α=β+90°這個結(jié)論正確嗎?若正確請證明過程.若不正確請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O直徑,C、D是⊙O上的兩點,若∠BAC=20°,
AD
=
DC
,則∠DAC的度數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O直徑,OB=6,弦CD=10,則弦心距OP的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O直徑,弦CD交AB于E,∠AEC=45°,AB=2.設(shè)AE=x,CE2+DE2=y.下列圖象中,能表示y與x的函數(shù)關(guān)系是的(  )

查看答案和解析>>

同步練習(xí)冊答案