8.如圖,⊙O中,AB,AC是弦,點(diǎn)M是$\widehat{CAB}$的中點(diǎn),MP⊥AB,垂足為P,若AC=1,AP=2,則PB的長為4.

分析 首先證明△DEB、△AEC是等腰三角形,得到AE=AC=1,PE=PB=3,即可解決問題.

解答 解:如圖,延長MP交⊙O于D,連接DB、DC,延長DC、BA交于點(diǎn)E,
∵$\widehat{CM}$=$\widehat{BM}$,
∴∠CDM=∠BDM,
∵PM⊥AB,
∴∠DPE=∠DPB=90°,
在△DPE和△DPB中,
$\left\{\begin{array}{l}{∠DPE=∠DPB}\\{DP=DP}\\{∠EDP=∠BDP}\end{array}\right.$,
∴△DPE≌△DPB,
∴DE=DB,EP=PB,
∴∠E=∠B,
∵∠ECA=∠B,
∴∠E=∠ECA,
∴AE=AC=1,
∵PA=2,
∴PE=PB=AE+PA=3,
∴AB=PB+PA=3+1=4.
故答案為4.

點(diǎn)評(píng) 本題考查圓周角定理、圓內(nèi)接四邊形的性質(zhì)、等腰三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),利用等腰三角形的性質(zhì)是解決問題的關(guān)鍵,屬于中考?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案