(2012•龍崗區(qū)二模)如圖,平面直角坐標(biāo)系中,M是雙曲線y=上的一點(diǎn),⊙M與y軸切于點(diǎn)C,與x軸交于A、B兩點(diǎn).若點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)A的坐標(biāo)為(1,0),則k的值為   
【答案】分析:連接CM,AM,過點(diǎn)M作MD⊥AB,在直角三角形ADM中,由勾股定理得出⊙M的半徑為r,從而得出點(diǎn)M的坐標(biāo),即可得出答案.
解答:解:如圖,連接CM,AM,過點(diǎn)M作MD⊥AB,垂足為D,
設(shè)⊙M的半徑為r,在直角三角形ADM中,
由勾股定理得AM2=AD2+DM2,
即r2=(r-1)2+22,
解得r=2.5,
∴點(diǎn)M的坐標(biāo)(2.5,2)
∴反比例函數(shù)的解析式為y=
故答案為:5.
點(diǎn)評(píng):本題是一道反比例函數(shù)的綜合題目,考查了用待定系數(shù)法求反比例函數(shù)的解析式以及勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2012•龍崗區(qū)二模)如圖1,等腰梯形ABCD中,AD∥BC,AB=CD=,AD=5,BC=3.以AD所在的直線為x軸,過點(diǎn)B且垂直于AD的直線為y軸建立平面直角坐標(biāo)系.拋物線y=ax2+bx+c經(jīng)過O、C、D三點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)(1)中的拋物線與BC交于點(diǎn)E,P是該拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn)(如圖2):
①若直線PC把四邊形AOEB的面積分成相等的兩部分,求直線PC的函數(shù)表達(dá)式;
②連接PB、PA,是否存在△PAB是直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo),并直接寫出相應(yīng)的△PAB的外接圓的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2012•龍崗區(qū)二模)由于節(jié)約用水,小明發(fā)現(xiàn)他家同樣是用10m3的水,本月比上月能多用5天.已知本月小明家每天的平均用水量比上月少20%,求小明家上月每天的平均用水量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2012•龍崗區(qū)二模)如圖,菱形ABCD中,過點(diǎn)C作CE⊥AB,交AB的延長(zhǎng)線于點(diǎn)E,作CF⊥AD,交AD的延長(zhǎng)線于點(diǎn)F.
(1)求證:△CBE≌△CDF;
(2)若∠CAE=30°,CE=3,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省深圳市龍崗區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2012•龍崗區(qū)二模)解不等式組,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習(xí)冊(cè)答案