【題目】如圖,在△ ABC中,AB=AC,點D在線段BC上,AD=BD,△ ADC是等腰三角形,求△ABC三個內角的度數(shù)。
【答案】∠BAC=108°,∠B=∠C=36°或∠BAC=90°,∠B=∠C=45°
【解析】
△ ADC是等腰三角形,分類討論:分AC=DC或AD=DC兩種情況;當AC=DC時,利用等腰三角形的等邊對等角,設∠B,利用三角形的外角的性質求得∠ADC=∠B+∠BAD,然后利用三角形的內角和構建方程求解即可;當AD=DC時,利用等腰三角形的等邊對等角結合三角形內角和定理即可求得答案.
∵ △ ADC是等腰三角形
當AC=DC時
∴ ∠DAC=∠ADC
又∵ AB=AC,AD=BD
∴ ∠B=∠C=∠BAD
設∠B,則∠ADC= ∠B+∠BAD
∴∠DAC=∠ADC,∠BAC=∠DAC+∠BAD
于是在△ ABC中,有 ∠B+∠C+∠BAC180°
解得
所以,在△ ABC中,∠BAC=108°,∠B=∠C=36°
當AD=DC時,如下圖:
∵AD=DC,
∴∠2=∠C,
∵AB=AC,
∴∠B=∠C
∵AD=BD,
∴∠B=∠1,
∴∠B=∠C=∠1=∠2,
∵∠B+∠C+∠1+∠2=180,
∴∠B+∠C=45,∠1+∠2=90°,
∠BAC=∠1+∠2=90°,
所以,在△ ABC中,∠BAC=90°,∠B=∠C=45°
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當直線MN繞點C旋轉到圖1的位置時,求證:①△ADC≌△CEB;②DE=AD+BE;
(2)當直線MN繞點C旋轉到圖2的位置時,求證:DE=AD﹣BE;
(3)當直線MN繞點C旋轉到圖3的位置時,試問DE、AD、BE具有怎樣的等量關系?請寫出這個等量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知□ABCD的面積為S,點P、Q時是ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結EF。甲,乙兩位同學對條件進行分析后,甲得到結論①:“E是BC中點” .乙得到結論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學的結論是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)如圖①,對△ABC作變換[60°,]得△AB′C′,則S△AB′C′:S△ABC= ;直線BC與直線B′C′所夾的銳角為 度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.
()請直接寫出袋子中白球的個數(shù).
()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b)(m≠1且為實數(shù)),其中正確的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,AB=AC,D點為Rt△ABC外一點,且BD⊥CD,DF為∠BDA的平分線,當∠ACD=15°,下列結論:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2D,其中正確的是( )
A.①③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某經(jīng)銷商銷售一種產品,這種產品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于18元/千克,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關系如圖所示:
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com