【題目】在△ABC和△A1B1C1中,下列命題中真命題的個數(shù)為( )
(1)若∠A=∠A1,∠C=∠C1,則△ABC∽△A1B1C1;
(2)若AC∶A1C1=CB∶C1B1,∠C=∠C1,則△ABC∽△A1B1C1;
(3)若AB=kA1B1,AC=kA1C1(k≠0),∠A=∠A1,則△ABC∽△A1B1C1;
(4)若S△ABC=,則△ABC∽△A1B1C1.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
根據(jù)相似三角形的性質(zhì)①有兩角相等的兩個三角形相似,②有兩邊的比相等,并且它們的夾角也相等的兩個三角形相似,③有三組對應(yīng)邊的比相等的兩三角形相似,逐個判斷即可.
解:如圖:
(1)∠A=∠,∠C=∠,
△ABC~△, (1)正確;
(2)AC∶A1C1=CB∶C1B1,∠C=∠C1, △ABC~△,(2)正確;
(3) AB=kA1B1,AC=kA1C1(k≠0), =k
又∠A=∠A1△ABC~△,(3)正確;
(4)當AB=2,AB邊上的高為1, =1,邊上的高為2時, S△ABC=此時△ABC和△不相似,故(4)錯誤;
所以正確的有(1)(2)(3),故C選項是正確的.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與二次函數(shù)的圖像交于點A、O,(O是坐標原點),點P為二次函數(shù)圖像的頂點,OA=,AP的中點為B.
(1)求二次函數(shù)的解析式;
(2)求線段OB的長;
(3)若射線OB上存在點Q,使得△AOQ與△AOP相似,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校積極開展“我愛我的祖國”教育知識競賽,八年級甲、乙兩班分別選5名同學參加比賽,其預(yù)賽成績?nèi)鐖D所示:
(1)根據(jù)上圖填寫下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | |||
乙班 | 8.5 | 10 | 1.6 |
(2)根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度對甲乙兩班進行分析.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是“作出弧AB所在的圓”的尺規(guī)作圖過程.
已知:弧AB.
求作:弧AB所在的圓.
作法:如圖,
(1)在弧AB上任取三個點D,C,E;
(2)連接DC,EC;
(3)分別作DC和EC的垂直平分線,兩垂直平分線的交點為點O.
(4)以 O為圓心,OC長為半徑作圓,所以⊙O即為所求作的弧AB所在的圓.
請回答:該尺規(guī)作圖的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,連接BE,CD相交于點O,連接DE,下列結(jié)論:①=;②=;③=;④=,其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖給出下列五個等量關(guān)系
①AB=AC;②BD=CD;③∠BAD=∠CAD;④∠B=∠C=90°;⑤∠BDA=∠CDA.
請你以其中兩個為條件,另三個中的一個為結(jié)論,寫出一個正確命題(只需寫出一種情況),并加以證明.
解:我選作為題設(shè)的等量關(guān)系是: 、 ;
作為正確結(jié)論的等量關(guān)系是 .
證明:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B、C、P四點均在邊長為1的小正方形網(wǎng)格格點上.
(1)判斷△PBA與△ABC是否相似,并說明理由;
(2)求∠BAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com