【題目】如圖,正方形ABCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°后得到正方形BEFG,EF與AD相交于點(diǎn)H,延長DA交GF于點(diǎn)K.若正方形ABCD邊長為 ,則AK= .
【答案】2 ﹣3
【解析】解:連接BH,如圖所示:
∵四邊形ABCD和四邊形BEFG是正方形,
∴∠BAH=∠ABC=∠BEH=∠F=90°,
由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,
∴∠ABE=60°,
在Rt△ABH和Rt△EBH中,
,
∴Rt△ABH≌△Rt△EBH(HL),
∴∠ABH=∠EBH= ∠ABE=30°,AH=EH,
∴AH=ABtan∠ABH= × =1,
∴EH=1,
∴FH= ﹣1,
在Rt△FKH中,∠FKH=30°,
∴KH=2FH=2( ﹣1),
∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3;
故答案為:2 ﹣3.
連接BH,由正方形的性質(zhì)得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋轉(zhuǎn)的性質(zhì)得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL證明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH= ∠ABE=30°,AH=EH,由三角函數(shù)求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)三角形的第一條邊長為(a+2b)厘米,第二條邊比第一條邊短(b﹣2)厘米,第三條邊比第二條邊短3厘米.
(1)請用式子表示該三角形的周長;
(2)當(dāng)a=2,b=3時(shí),求此三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,O是矩形ABCD的對角線的交點(diǎn),作DE∥AC,CE∥BD,DE、CE相交于點(diǎn)E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A在數(shù)軸上距原點(diǎn)2個(gè)單位長度,若一個(gè)點(diǎn)從點(diǎn)A處向右移動3個(gè)單位長度,再向左移動4個(gè)單位長度,此時(shí)終點(diǎn)所表示的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級學(xué)生體育測試成績情況,以九年級(1)班學(xué)生的體育測試成績?yōu)闃颖,按A、B、C、D四個(gè)等級進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成下兩幅統(tǒng)計(jì)圖(如圖),請你結(jié)合圖中所給信息解答下列問題:(說明:A級:90分—100分;B級:75分—89分;C級:60分—74分;D級:60分以下)
(1)D級學(xué)生的人數(shù)占全班人數(shù)的百分比為 ;
(2)扇形統(tǒng)計(jì)圖中C級所在扇形圓心角度數(shù)為 ;
(3)該班學(xué)生體育測試成績的中位數(shù)落在等級 內(nèi);
(4)若該校九年級學(xué)生共有500人,請你估計(jì)這次考試中A級和B級的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(a+1,b-1)在第二象限,則點(diǎn)B(-a,b+2)在( )
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)源于生活,并用于生活,要把一根木條固定在墻上至少需要釘兩顆釘子,其中的數(shù)學(xué)原理是( 。
A. 兩點(diǎn)之間,線段最短 B. 兩點(diǎn)確定一條直線
C. 線段的中點(diǎn)定義 D. 直線可以向兩邊延長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的兩條對角線相交于點(diǎn)O,過點(diǎn) A作AG⊥BD分別交BD、BC于點(diǎn)G、E.
(1)求證:BE2=EGEA;
(2)連接CG,若BE=CE,求證:∠ECG=∠EAC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com