小麗一家利用元旦三天駕車到某景點旅游,小汽車出發(fā)前油箱有油36L,行駛?cè)舾尚r后,中途在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關系如圖所示,根據(jù)圖象回答下列問題:
(1)汽車行駛______h后加油,中途加油______L;
(2)求加油前油箱余沒油量Q與行駛時間t之間的函數(shù)關系式;
(3)如果加油站距景點200km,車速為80km/h,要到達目的地,油箱中的油是否夠用?請說明理由.
(1)從圖中可知汽車行駛3h后加油,中途加油24L;

(2)根據(jù)分析可知Q=-10t+36(0≤t≤3);

(3)油箱中的油是夠用的.
∵200÷80=2.5(小時),需用油10×2.5=25L<30L,
∴油箱中的油是夠用的.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

在直角坐標平面內(nèi),O為原點,點A的坐標為(1,0),點C的坐標為(0,4),直線CMx軸(如圖所示),點B與點A關于原點對稱,直線y=x+b(b為常數(shù))經(jīng)過點B,且與直線CM相交點D,連接OD,設P在x軸的正半軸上,若△POD為等腰三角形,則點P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

“城市發(fā)展交通先行”,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當0<x≤28時,V=80;當28<x≤188時,V是x的一次函數(shù).函數(shù)關系如圖所示.
(1)求當28<x≤188時,V關于x的函數(shù)表達式;
(2)若車流速度V不低于50千米/時,求當車流密度x為多少時,車流量P(單位:輛/時)達到最大,并求出這一最大值.
(注:車流量是單位時間內(nèi)通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如果y+3與x+2成正比例,且x=3時,y=7.
(1)寫出y與x之間的函數(shù)關系式;
(2)畫出該函數(shù)圖象;并觀察當x取什么值時,y<0?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

竹溪物流公司組織20輛汽車裝運A、B、C三種竹溪特產(chǎn)共120噸去外地銷售.按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產(chǎn),且必須裝滿,根據(jù)如表提供的信息,解答以下問題:
(1)設裝運A種土特產(chǎn)的車輛數(shù)為x,裝運B種土特產(chǎn)的車輛數(shù)為y,求y與x之間的函數(shù)關系式;
竹溪土特產(chǎn)種類ABC
每輛汽車運載量(噸)865
每噸土特產(chǎn)獲利(百元)121610
(2)如果裝運每種土特產(chǎn)的車輛都不少于3輛,要使此次銷售獲利最大,應怎樣安排車輛?并求出最大利潤的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,點P(x,y)在第一象限,且點P(x,y)在直線l:x+y=12的圖象上,點A(10,0)在x軸上,設△OPA的面積為S.
(1)求S關于x的關系式,并確定x的取值范圍;
(2)畫出S關于x的函數(shù)圖象;
(3)在直線l上是否存在點M使△OAM是等腰三角形?若存在,求出點M的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線l1⊥x軸于點(1,0),直線l2⊥x軸于點(2,0),直線l3⊥x軸于點(3,0),…直線ln⊥x軸于點(n,0).函數(shù)y=x的圖象與直線l1,l2,l3,…ln分別交于點A1,A2,A3,…An;函數(shù)y=2x的圖象與直線l1,l2,l3,…ln分別交于點B1,B2,B3,…Bn.如果△OA1B1的面積記作S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…四邊形An-1AnBnBn-1的面積記作Sn,那么S2012=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖所示,直線l的解析式為y=
3
4
x-3,并且與x軸、y軸分別相交于點A、B.
(1)求A、B兩點的坐標;
(2)一個圓心在坐標原點、半徑為1的圓,以0.4個單位/每秒的速度向x軸正方向運動,問什么時刻該圓與直線l相切;
(3)在題(2)中,若在圓開始運動的同時,一動點P從B點出發(fā),沿BA方向以0.5個單位/秒的速度運動,問在整個運動的過程中,點P在動圓的園面(圓上和圓的內(nèi)部)上一共運動了多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知一個直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標系中,折疊該紙片,折痕與邊OB交于點C,與邊AB交于點D.

(1)若折疊后使點B與點O重合,則點C的坐標為______;若折疊后使點B與點A重合,則點C的坐標為______;
(2)若折疊后點B落在邊OA上的點為B′,設OB′=x,OC=y,試寫出y關于x的函數(shù)解析式,并確定y的取值范圍;
(3)若折痕經(jīng)過點O,請求出點B落在x軸上的點B′的坐標;
(4)若折疊后點B落在邊OA上的點為B′,且使DB′⊥OA,求此時點C的坐標.

查看答案和解析>>

同步練習冊答案