【題目】如圖,已知點(diǎn)D在反比例函數(shù)y= 的圖象上,過(guò)點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過(guò)點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC= .
(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說(shuō)明理由;
(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).
【答案】
(1)解:∵A(5,0),
∴OA=5.
∵ ,
∴ ,解得OC=2,
∴C(0,﹣2),
∴BD=OC=2,
∵B(0,3),BD∥x軸,
∴D(﹣2,3),
∴m=﹣2×3=﹣6,
∴ ,
設(shè)直線AC關(guān)系式為y=kx+b,
∵過(guò)A(5,0),C(0,﹣2),
∴ ,解得 ,
∴ ;
(2)解:∵B(0,3),C(0,﹣2),
∴BC=5=OA,
在△OAC和△BCD中
∴△OAC≌△BCD(SAS),
∴AC=CD,
∴∠OAC=∠BCD,
∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
∴AC⊥CD;
(3)解:∠BMC=45°.
如圖,連接AD,
∵AE=OC,BD=OC,AE=BD,
∴BD∥x軸,
∴四邊形AEBD為平行四邊形,
∴AD∥BM,
∴∠BMC=∠DAC,
∵△OAC≌△BCD,
∴AC=CD,
∵AC⊥CD,
∴△ACD為等腰直角三角形,
∴∠BMC=∠DAC=45°.
【解析】(1)由正切定義可求C坐標(biāo),進(jìn)而由BD=OC求出D坐標(biāo),求出 反比例函數(shù)解析式;由A、C求出直線解析式;(2)由條件可判定△OAC≌△BCD,得出AC=CD,∠OAC=∠BCD,進(jìn)而AC⊥CD;(3) 由已知可得AE=OC,BD=OC,得出AE=BD,再加平行得四邊形AEBD為平行四邊形,推出 △OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=45°.
【考點(diǎn)精析】本題主要考查了比例系數(shù)k的幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)∣—6∣+(—3.14)0—()-2+(—2)3 (2)(-a)3a2+(2a4)2÷a3.
(3) (4)(a-2b)(a+b)-3a(a+b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為D,連結(jié)BD,CD,其中CD交直線AP與點(diǎn)E.
(1)如圖1,若∠PAB=30°,則∠ACE= ;
(2)如圖2,若60°<∠PAB<120°,請(qǐng)補(bǔ)全圖形,判斷由線段AB,CE,ED可以構(gòu)成一個(gè)含有多少度角的三角形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為直線AB上的一點(diǎn),∠COE是直角,OF平分∠AOE.
(1)如圖1,若∠COF=34°,則∠BOE=______;
(2)如圖1,若∠BOE=80°,則∠COF=______;
(3)若∠COF=m°,則∠BOE=______度;∠BOE與∠COF的數(shù)量關(guān)系為______.
(4)當(dāng)∠COE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2的位置時(shí),(3)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人到島上去探寶,從A處登陸后先往東走4 km,又往北走1.5 km,遇到障礙后又往西走2 km,再折回向北走到4.5 km處往東一拐,僅走0.5 km就找到寶藏.問(wèn)登陸點(diǎn)A與寶藏埋藏點(diǎn)B之間的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的圖形中,所有四邊形都是正方形,所有的三角形都是直角三角形,其中最大正方形邊長(zhǎng)為7cm,設(shè)正方形A、B、C、D、E、F面積分別為SA、SB、SC、SD、SE、SF,則下列各式正確有()個(gè).
① SA+SB+SC+SD=49;② SE+SF=49;③ SA+SB+SF=49;④ SC+SD+SE=4
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條公路上順次有A、B、C三地,甲、乙兩車同時(shí)從A地出發(fā),分別勻速前往B地,C地,甲車到達(dá)B地停留一段時(shí)間后原速原路返回,乙車到達(dá)C地后立即原速原路返回,乙車比甲車早1小時(shí)返回A地,甲、乙兩車各自行駛的路程y(千米)與時(shí)間x(時(shí))(從兩車出發(fā)時(shí)開(kāi)始計(jì)時(shí))之間的圖象如圖所示.
(1)在上述變化過(guò)程中,自變量是 ,因變量是 .
(2)乙車行駛的速度為 千米/小時(shí);
(3)甲車到達(dá)B地停留了多久?B地與C地之間的距離為多少千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com