【題目】如圖,在△ABC中,AB=AC=10,點D是邊上一動點(不與B,C重合),∠ADE=∠B=a,DE交AC于點E,且cosa=,則線段CE的最大值為____.
【答案】6.4
【解析】
作AG⊥BC于G,如圖,根據(jù)等腰三角形的性質(zhì)得BG=CG,再利用余弦的定義計算出BG=8,則BC=2BG=16,設(shè)BD=x,則CD=16-x,證明△ABD∽△DCE,利用相似比可表示出CE=-x2 +,然后利用二次函數(shù)的性質(zhì)求CE的最大值.
解:作AG⊥BC于G,如圖,
∵AB=AC,
∴BG=CG,
∵∠ADE=∠B=α,
∴cosB=cosα== ,
∴BG=×10=8,
∴BC=2BG=16,
設(shè)BD=x,則CD=16-x,
∵∠ADC=∠B+∠BAD,即α+∠CDE=∠B+∠BAD,
∴∠CDE=∠BAD,
而∠B=∠C,
∴△ABD∽△DCE,
,即
CE=-x2 +
=-(x-8)2+6.4,
當x=8時,CE最大,最大值為6.4.
故答案為:6.4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,連結(jié)CD與AB相交于點P,則tan∠APD的值是( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),B(﹣4,0).
(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C,求△BMC面積的最大值;
(3)在(2)中△BMC面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)以下列正方形網(wǎng)絡(luò)的交點為頂點,分別畫出兩個相似比不為1的相似三角形,使它們:①都是直角三角形;②都是銳角三角形;③都是鈍角三角形.
(2)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,﹣1)、(2,1).
①以0點為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;
②分別寫出B、C兩點的對應點B′、C′的坐標;
③如果△OBC內(nèi)部一點M的坐標為(x,y),寫出M的對應點M′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,,cm,動點以2cm/s的速度在的邊上沿的方向勻速運動,動點在的邊上沿的方向勻速運動,、兩點同時出發(fā),5s后,點到達終點,點立即停止運動(此時點尚未到達點).設(shè)點運動的時間為(s),的面積為(cm2),與的函數(shù)圖像如圖②所示.
(1)圖①中 cm,點運動的速度為 cm/s;
(2)求函數(shù)的最大值;
(3)當為何值時,以、、為頂點的三角形與相似?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x -2mx(m為常數(shù)),當-1≤x≤2時,函數(shù)y的最小值為-2,則m的值是( )
A. B. C. 或 D. -或
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角三角形ABC,∠ACB=90°,D是斜邊AB的中點,且AC=BC=16分米,以點B為圓心,BD為半徑畫弧,交BC于點F,以點C為圓心,CD為半徑畫弧,分別交AB、BC于點E、G.求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點O順時針旋轉(zhuǎn)75°至OA’B’C’的位置.若OB=,∠C=120°,則點B’的坐標為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋中裝有4張相同的紙牌,它們分別標有數(shù)字1,2,3,4.隨機地摸取出一張紙牌然后放回,在隨機摸取出一張紙牌,(1)計算兩次摸取紙牌上數(shù)字之和為5的概率;
(2)甲、乙兩個人進行游戲,如果兩次摸出紙牌上數(shù)字之和為奇數(shù),則甲勝;如果兩次摸出紙牌上數(shù)字之和為偶數(shù),則乙勝.這是個公平的游戲嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com