【題目】計(jì)算:
(1)先化簡(jiǎn),再求值:( ,其中x= ﹣2.
(2)計(jì)算:|﹣4|+( 2﹣( ﹣1)0 cos45°.

【答案】
(1)解:(

=

=3(x+1)﹣(x﹣1)

=3x+3﹣x+1

=2x+4,

當(dāng)x= ﹣2時(shí),原式=2( ﹣2)+4=2 ﹣4+4=2


(2)解:|﹣4|+( 2﹣( ﹣1)0 cos45°

=4+4﹣1﹣

=4+4﹣2

=6.


【解析】(1)先將括號(hào)里的分式通分,再進(jìn)行乘法運(yùn)算(約分),結(jié)果化成最簡(jiǎn)分式,代入化簡(jiǎn)后的分式求值即可。
(2)此題利用利用絕對(duì)值的代數(shù)意義、負(fù)指數(shù)冪法則、零指數(shù)冪法則及特殊角的三角函數(shù)值化簡(jiǎn),計(jì)算即可得到結(jié)果.

【考點(diǎn)精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A、Dy軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點(diǎn)C的坐標(biāo)為(40),點(diǎn)EAC上一點(diǎn),且∠DEA=DBO,求BC+EC的長(zhǎng);

3)如圖3,過DDFACF點(diǎn),點(diǎn)HFC上一動(dòng)點(diǎn),點(diǎn)GOC上一動(dòng)點(diǎn),當(dāng)HFC上移動(dòng)、點(diǎn)GOC上移動(dòng)時(shí),始終滿足∠GDH=GDO+FDH,試判斷FHGH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.

(圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (k≠0)的圖象交于點(diǎn)A(1,3),B(m,1),與x軸交于點(diǎn)D,直線OA與反比例函數(shù)y= (k≠0)的圖象的另一支交于點(diǎn)C,過點(diǎn)B作直線l垂直于x軸,點(diǎn)E是點(diǎn)D關(guān)于直線l的對(duì)稱點(diǎn).

(1)k=;
(2)判斷點(diǎn)B,E,C是否在同一條直線上,并說明理由;
(3)如圖2,已知點(diǎn)F在x軸正半軸上,OF= ,點(diǎn)P是反比例函數(shù)y= (k≠0)的圖象位于第一象限部分上的點(diǎn)(點(diǎn)P在點(diǎn)A的上方),∠ABP=∠EBF,則點(diǎn)P的坐標(biāo)為().

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )

A.3:4
B. :2
C. :2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題:如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于
(1)【回顧】
如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于

(2)【探究】
圖2是同學(xué)們熟悉的一副三角尺,一個(gè)含有30°的角,較短的直角邊長(zhǎng)為a;另一個(gè)含有45°的角,直角邊長(zhǎng)為b,小明用兩副這樣的三角尺拼成一個(gè)平行四邊形ABCD(如圖3),用了兩種不同的方法計(jì)算它的面積,從而推出sin75°= ,小麗用兩副這樣的三角尺拼成了一個(gè)矩形EFGH(如圖4),也推出sin75°= ,請(qǐng)你寫出小明或小麗推出sin75°= 的具體說理過程.

(3)【應(yīng)用】
在四邊形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如圖5)

①點(diǎn)E在AD上,設(shè)t=BE+CE,求t2的最小值;
②點(diǎn)F在AB上,將△BCF沿CF翻折,點(diǎn)B落在AD上的點(diǎn)G處,點(diǎn)G是AD的中點(diǎn)嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生會(huì)主席換屆選舉,經(jīng)初選、復(fù)選后,共有甲,乙,丙三人進(jìn)入最后的競(jìng)選,最后決定用投票方式進(jìn)行選舉,共發(fā)出1800張選票,得票數(shù)最高者為當(dāng)選人,且廢票不計(jì)入任何一位候選人的得票數(shù)內(nèi),全校設(shè)有四個(gè)投票箱,目前第一、第二、第三投票箱已開完所有選票,剩下第四投票箱尚未開票,結(jié)果如表所示:單位:票

投票箱

候選人

廢票

合計(jì)

200

211

147

12

570

244

15

630

97

41

205

7

350

250

若第二投票箱候選人甲的得票數(shù)比乙的3倍還多31票,請(qǐng)分別求出第二投票箱甲、乙兩名候選人的得票數(shù).

根據(jù)題的數(shù)據(jù)分析,請(qǐng)判斷乙侯選人是否還有機(jī)會(huì)當(dāng)選,并詳細(xì)解釋或完整寫出你的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個(gè)角的差的絕對(duì)值等于,就稱這兩個(gè)角互為反余角,其中一個(gè)角叫做另一個(gè)角的反余角,例如,,,,則互為反余角,其中的反余角,也是的反余角.

如圖為直線AB上一點(diǎn),于點(diǎn)O于點(diǎn)O,則的反余角是______的反余角是______;

若一個(gè)角的反余角等于它的補(bǔ)角的,求這個(gè)角.

如圖2,O為直線AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn)得,同時(shí)射線OP從射線OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn),當(dāng)射線OP與射線OB重合時(shí)旋轉(zhuǎn)同時(shí)停止,若設(shè)旋轉(zhuǎn)時(shí)間為t秒,求當(dāng)t為何值時(shí),互為反余角圖中所指的角均為小于平角的角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板如圖1擺放在直線MN上,在三角板OAB和三角板OCD中,,,

保持三角板OCD不動(dòng),將三角板OAB繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)時(shí)間為t秒.

當(dāng)______秒時(shí),OB平分此時(shí)______;

當(dāng)三角板OAB旋轉(zhuǎn)至圖2的位置,此時(shí)有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由;

如圖3,若在三角板OAB開始旋轉(zhuǎn)的同時(shí),另一個(gè)三角板OCD也繞點(diǎn)O以每秒的速度逆時(shí)針旋轉(zhuǎn),當(dāng)OB旋轉(zhuǎn)至射線OM上時(shí)同時(shí)停止.

當(dāng)t為何值時(shí),OB平分?

直接寫出在旋轉(zhuǎn)過程中,之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(﹣3,4),B(﹣4,2),C(﹣2,1),△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到△A1B1C1,將△A1B1C1向右平移6個(gè)單位,再向上平移2個(gè)單位得到△A2B2C2

(1)畫出△A1B1C1和△A2B2C2;

(2)△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)分別為A1A2,請(qǐng)寫出點(diǎn)A1、A2的坐標(biāo);

(3)Pa,b)是△ABC的邊AC上一點(diǎn),△ABC經(jīng)旋轉(zhuǎn)、平移后點(diǎn)P的對(duì)應(yīng)點(diǎn)分別為P1,P2,請(qǐng)寫出點(diǎn)P1、P2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案