(2008•樂山)從甲,乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖,梯形ABCD中,AD∥BC,點(diǎn)E是邊AD的中點(diǎn),連接BE交AC于點(diǎn)F,BE的延長線交CD的延長線于點(diǎn)G.
(1)求證:
(2)若GE=2,BF=3,求線段EF的長.
題乙:如圖,反比例函數(shù)y=的圖象,當(dāng)-4≤x≤-1時(shí),-4≤y≤-1.
(1)求該反比例函數(shù)的解析式;
(2)若M,N分別在反比例函數(shù)圖象的兩支上,請指出什么情況下線段MN最短(不需證明),并求出線段MN長度的取值范圍.

【答案】分析:甲:(1)因?yàn)锳D∥BC,所以△GED∽△GBC,所以兩三角形的對應(yīng)邊成比例;又點(diǎn)E是邊AD的中點(diǎn),AE=ED.此題得證
(2)AD∥BC還可以得到△AEF∽△CBF,又AE=ED,通過等量代換即可得到GE、GB、EF、FB之間的關(guān)系.
乙:(1)圖象經(jīng)過A(-1,-4),可用待定系數(shù)法求解.
(2)考慮經(jīng)過原點(diǎn)并且在同一直線上,也就成了線段MN.
解答:甲題:
(1)證明:∵AD∥BC
∴△GED∽△GBC(2分)
(3分)
又∵點(diǎn)E是邊AD的中點(diǎn)
∴AE=ED
(4分)

(2)解:∵AD∥BC
∴△AEF∽△CBF
(5分)
由(1)知
(6分)
設(shè)EF=x,則GB=5+x,
則有(8分)
即x2+5x-6=0
解得:x=1或x=-6,
經(jīng)檢驗(yàn),x=1或x=-6都是原方程的根,但x=-6不合題意,舍去.
故EF的長為1.(9分)

乙題:
解:(1)因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過點(diǎn)(-1,-4)
(2分)
∴k=4(3分)
所以反比例函數(shù)的解析式為.(4分)

(2)當(dāng)M,N為-,三象限角平分線與反比例函數(shù)圖象的交點(diǎn)時(shí),線段MN最短.(5分)
將y=x代入,
解得
即M(2,2),N(-2,-2).(6分)
∴OM=2.(7分)
則MN=4.(8分)
又∵M(jìn),N為反比例函數(shù)圖象上的任意兩點(diǎn),
由圖象特點(diǎn)知,線段MN無最大值,即MN≥4.(9分)
點(diǎn)評:題甲:主要考查相似三角形對應(yīng)邊成比例,點(diǎn)E是邊AD的中點(diǎn)得AE=ED是突破口
題乙:主要考查待定系數(shù)法求反比例函數(shù)解析式,猜想時(shí)首選經(jīng)過原點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2008•樂山)從甲,乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖,梯形ABCD中,AD∥BC,點(diǎn)E是邊AD的中點(diǎn),連接BE交AC于點(diǎn)F,BE的延長線交CD的延長線于點(diǎn)G.
(1)求證:;
(2)若GE=2,BF=3,求線段EF的長.
題乙:如圖,反比例函數(shù)y=的圖象,當(dāng)-4≤x≤-1時(shí),-4≤y≤-1.
(1)求該反比例函數(shù)的解析式;
(2)若M,N分別在反比例函數(shù)圖象的兩支上,請指出什么情況下線段MN最短(不需證明),并求出線段MN長度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2008•樂山)從甲,乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖,梯形ABCD中,AD∥BC,點(diǎn)E是邊AD的中點(diǎn),連接BE交AC于點(diǎn)F,BE的延長線交CD的延長線于點(diǎn)G.
(1)求證:;
(2)若GE=2,BF=3,求線段EF的長.
題乙:如圖,反比例函數(shù)y=的圖象,當(dāng)-4≤x≤-1時(shí),-4≤y≤-1.
(1)求該反比例函數(shù)的解析式;
(2)若M,N分別在反比例函數(shù)圖象的兩支上,請指出什么情況下線段MN最短(不需證明),并求出線段MN長度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《分式方程》(03)(解析版) 題型:解答題

(2008•樂山)從甲,乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖,梯形ABCD中,AD∥BC,點(diǎn)E是邊AD的中點(diǎn),連接BE交AC于點(diǎn)F,BE的延長線交CD的延長線于點(diǎn)G.
(1)求證:;
(2)若GE=2,BF=3,求線段EF的長.
題乙:如圖,反比例函數(shù)y=的圖象,當(dāng)-4≤x≤-1時(shí),-4≤y≤-1.
(1)求該反比例函數(shù)的解析式;
(2)若M,N分別在反比例函數(shù)圖象的兩支上,請指出什么情況下線段MN最短(不需證明),并求出線段MN長度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年四川省樂山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•樂山)從甲,乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
題甲:如圖,梯形ABCD中,AD∥BC,點(diǎn)E是邊AD的中點(diǎn),連接BE交AC于點(diǎn)F,BE的延長線交CD的延長線于點(diǎn)G.
(1)求證:
(2)若GE=2,BF=3,求線段EF的長.
題乙:如圖,反比例函數(shù)y=的圖象,當(dāng)-4≤x≤-1時(shí),-4≤y≤-1.
(1)求該反比例函數(shù)的解析式;
(2)若M,N分別在反比例函數(shù)圖象的兩支上,請指出什么情況下線段MN最短(不需證明),并求出線段MN長度的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案