某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價每天增加x元(x為10的整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

(1),且(0≤x≤160,且x為10的正整數(shù)倍);(2);(3)訂住34個房間時,賓館每天利潤最大,最大利潤為10880元.

解析試題分析:本題是二次函數(shù)的應(yīng)用,特別容易出現(xiàn)的錯誤是在求最值時不考慮x的范圍,直接求頂點坐標.(1)理解每個房間的房價每增加x元,則減少房間間,則可以得到y(tǒng)與x之間的關(guān)系;(2)每個房間訂住后每間的利潤是房價減去20元,每間的利潤與所訂的房間數(shù)的積就是利潤;(3)求出二次函數(shù)的對稱軸,根據(jù)二次函數(shù)的增減性以及x的范圍即可求解.
試題解析:
解:(1)由題意得:,且(0≤x≤160,且x為10的正整數(shù)倍)
(2),即
(3)w=
拋物線的對稱軸是:,拋物線的開口向下,當x<170時,w隨x的增大而增大,但0≤x≤160,因而當x=160時,即房價是340元時,利潤最大,
此時一天訂住的房間數(shù)是:50-(160÷10)=34間,
最大利潤是:34×(340-20)=10880元.
答:一天訂住34個房間時,賓館每天利潤最大,最大利潤為10880元.
考點:二次函數(shù)的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某超市準備進一批每個進價為40元的小家電,經(jīng)市場調(diào)查預(yù)測,售價定為50元時可售出400個;定價每增加1元,銷售量將減少10個.
(1)設(shè)每個定價增加元,此時的銷售量是多少?(用含的代數(shù)式表示)
(2)超市若準備獲得利潤6000元,并且使進貨量較少,則每個應(yīng)定價為多少元?
(3)超市若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過程中發(fā)現(xiàn):當銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產(chǎn)成本—投資)為z(萬元).
(1)試寫出y與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(2)試寫出z與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(3)公司計劃,在第一年按年獲利最大確定銷售單價進行銷售;到第二年年底獲利不低于1130萬元,請借助函數(shù)的大致圖象說明:第二年的銷售單價x(元)應(yīng)確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于,兩點. C為二次函數(shù)圖象的頂點.

(1)求二次函數(shù)的解析式;
(2)定義函數(shù)f:“當自變量x任取一值時,x對應(yīng)的函數(shù)值分別為y1或y2,若y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;若y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).” 當直線(k >0)與函數(shù)f的圖象只有兩個交點時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:關(guān)于的二次函數(shù)y=px2-(3p+2)x+2p+2(p>0)
(1)求證:無論p為何值時,此函數(shù)圖象與x軸總有兩個交點;
(2)設(shè)這兩個交點坐標分別為(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S關(guān)于P的函數(shù)解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:拋物線與x軸交于點A、B(A左B右),其中點B的坐標為(7,0),設(shè)拋物線的頂點為C.

(1)求拋物線的解析式和點C的坐標;
(2)如圖1,若AC交y軸于點D,過D點作DE∥AB交BC于E.點P為DE上一動點,PF⊥AC于F,PG⊥BC于G.設(shè)點P的橫坐標為a,四邊形CFPG的面積為y,求y與a的函數(shù)關(guān)系式和y的最大值;
(3)如圖2,在條件(2)下,過P作PH⊥x軸于點H,連結(jié)FH、GH,是否存在點P,使得△PFH與△PHG相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點(B在A的左側(cè)),頂點為C, 點D(1,m)在此二次函數(shù)圖象的對稱軸上,過點D作y軸的垂線,交對稱軸右側(cè)的拋物線于E點.

(1)求此二次函數(shù)的解析式和點C的坐標;
(2)當點D的坐標為(1,1)時,連接BD、.求證:平分
(3)點G在拋物線的對稱軸上且位于第一象限,若以A、C、G為頂點的三角形與以G、D、E為頂點的三角形相似,求點E的橫坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線與x軸、y軸分別交于點A、C,經(jīng)過A、C兩點的拋物線與x軸的負半軸上另一交點為B,且tan∠CBO=3.

(1)求該拋物線的解析式及拋物線的頂點D的坐標;
(2)若點P是射線BD上一點,且以點P、A、B為頂點的三角形與△ABC相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

永嘉縣綠色和特色農(nóng)產(chǎn)品在國際市場上頗具競爭力,其中香菇遠銷日本和韓國等地.上市時,外商李經(jīng)理按市場價格10元/千克在我縣收購了2000千克香菇存放入冷庫中.據(jù)預(yù)測,香菇的市場價格每天每千克將上漲0.5元,但冷庫存放這批香菇時每天需要支出各種費用合計340元,而且香菇在冷庫中最多保存110天,同時,平均每天有6千克的香菇損壞不能出售.
(1)若存放天后,將這批香菇一次性出售,設(shè)這批香菇的銷售總金額為元,試寫出之間的函數(shù)關(guān)系式.
(2)李經(jīng)理想獲得利潤22500元,需將這批香菇存放多少天后出售?(利潤=銷售總金額-收購成本-各種費用)
(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

同步練習冊答案