如圖,△ABC中,AB=AC=DC,且AD=BD.求∠B度數(shù).

解:設(shè)∠B=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=BD,
∴∠B=∠DAB=x,
∴∠ADC=∠B+∠DAB=2x,
∵AC=CD,
∴∠ADC=∠CAD=2x,
在△ACD中,∠C=x,∠ADC=∠CAD=2x,
∴x+2x+2x=180°,
解得x=36°.
∴∠B=36°.
分析:先設(shè)∠B=x,由AB=AC可知,∠C=x,由AD=BD可知∠B=∠DAB=x,由三角形外角的性質(zhì)可知∠ADC=∠B+∠DAB=2x,根據(jù)AC=CD可知∠ADC=∠CAD=2x,再在△ABD中,由三角形內(nèi)角和定理即可得出關(guān)于x的一元一次方程,求出x的值即可.
點(diǎn)評(píng):本題考查的是等腰三角形的性質(zhì),解答此類題目時(shí)往往要用到三角形內(nèi)角和定理、三角形外角的性質(zhì)等隱含條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案