【題目】如圖,直線y=x+bx軸于A點,交y軸于B點,與反比例函數(shù)y= 交于點D,作DCx軸,DEy軸,則ADBD的值為________

【答案】4

【解析】

設(shè)Dx,y),由一次函數(shù)的性質(zhì)知∠ABO=45°,從而AD=OE,BD=BEADBD=2OEBE=2(y2by),聯(lián)立一次函數(shù)和反比例函數(shù)解析式可求y2yb=2,進而可求出結(jié)論.

解:設(shè)Dx,y

OE=y

y=x+b中,k=1,

∴∠ABO=45°,

∴∠OAB=45°,

AD=OE,BD=BE,

ADBD=2OEBE

∵令x=0代入y=x+b,

y=b

B(0,b),

BE=yb,

ADBD=2yyb)=2(y2by),

∵點D在直線y=x+by=上,

y2yb=2,

ADBD=2×2=4,

故答案為4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,C=90°,BC=6 cm,AC=8 cm,點P從點A開始沿AC向點C以2厘米/秒的速度運動;與此同時,點Q從點C開始沿CB邊向點B以1厘米/秒的速度運動;如果P、Q分別從A、C同時出發(fā),當(dāng)其中一點到達終點時,另一點也隨之停止運動.

(1)經(jīng)過幾秒,CPQ的面積等于3cm2?

(2)在整個運動過程中,是否存在某一時刻t,使PQ恰好平分ABC的面積?若存在,求出運動時間t;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的兩邊AB,AD的長是關(guān)于x的方程x2mx0的兩個實數(shù)根.

(1)當(dāng)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;

(2)AB的長為2,那么ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】亮亮和穎穎兩人用下面方法測量樓高:如圖,亮亮蹲在地上,穎穎站在亮亮和樓之間,兩人適當(dāng)調(diào)整自己的位置,當(dāng)樓的頂部M,穎穎的頭頂B及亮亮的眼睛A恰在一條直線上時,兩人分別標(biāo)定自己的位置C,D,然后測出兩人之間的距CD=1.25m,穎穎與樓之間的距離DN=30m(C,D,N在一條直線上),穎穎的身高BD=1.6m,亮亮蹲地觀測時眼睛到地面的距離AC=0.8m.求住宅樓的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了美化綠化校園,計劃購買甲,乙兩種花木共100棵綠化操場,其中甲種花木每棵60元,乙種花木每棵80元.

1)若購買甲,乙兩種花木剛好用去7200元,則購買了甲,乙兩種花木各多少棵?

2)如果購買乙種花木的數(shù)量不少于甲種花木的數(shù)量,請設(shè)計一種購買方案使所需費用最低,并求出該購買方案所需總費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P1.P2是反比例函數(shù)y=(k>0)在第一象限圖象上的兩點,A1的坐標(biāo)為(2,0),若△P1OA1與△P2A1A2均為等邊三角形.

(1)求此反比例函數(shù)的解析式;

(2)A2點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,在上取點,延長,使得;在上取一點,延長,使得;,按此做法進行下去,第n個等腰三角形的底角的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館擁有客房100間,經(jīng)營中發(fā)現(xiàn):每天入住的客房數(shù)y()與房價x()(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對應(yīng)值如下表:

x()

180

260

280

300

y()

100

60

50

40

(1)yx之間的函數(shù)表達式;

(2)已知每間入住的客房,賓館每日需支出各種費用100元;每間空置的客房,賓館每日需支出各種費用60元.當(dāng)房價為多少元時,賓館當(dāng)日利潤最大?求出最大利潤.(賓館當(dāng)日利潤=當(dāng)日房費收入-當(dāng)日支出)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑是4,點A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案