(1)如圖,P是正方形ABCD的BC邊上的中點(diǎn),AP⊥PQ,且PQ交∠DCB的外角平分線于Q.求證:AP=PQ
(2)P是正方形ABCD的BC邊所在直線上的任一點(diǎn),AP⊥PQ,且PQ交∠DCB的外角平分線所在直線于Q.(1)中的結(jié)論是否成立?試證之.

(1)證明:過點(diǎn)Q作QM⊥PC,于點(diǎn)M,
∵AP⊥PQ,
∴∠APB+∠QPM=90°,
∵∠QPM+∠PQM=90°,
∴∠PQM=∠APB,
∵∠ABP=∠QMP=90°,
∴△ABP∽△PMQ,
∵P是正方形ABCD的BC邊上的中點(diǎn),
∴BP=PC=AB,
=
∵PQ交∠DCB的外角平分線于Q.
∴QM=CM,
∴QM=CM=PC,
∴QM=BP,
∵∠PQM=∠APB,
∠ABP=∠QMP=90°,
∴△ABP≌△PMQ,
∴PA=PQ.

(2)證明:在AB上取一點(diǎn)M,使BM=BP,連接MP.
∴AM=CP.
∴∠BMP=45°,
∴∠AMP=135°.
∵CQ是外角平分線,
∴∠DCQ=45°,
∴∠PCQ=135°.
∴∠AMP=∠PCQ.
∵∠APB+∠BAP=90°,∠APB+∠CPF=90°,
∴∠BAP=∠CPF.
∴△AMP≌△QCP(ASA).
∴AP=QP.
分析:(1)利用過點(diǎn)Q作QM⊥PC,于點(diǎn)M,證明△ABP∽△PMQ,進(jìn)而得出△ABP≌△PMQ,即可得出PA=PQ.
(2)首先作輔助線:在AB上取一點(diǎn)M,使BM=BP,連接MP,利用ASA,易證得,△AMP≌△QCP,則可證得:AP=QP.
點(diǎn)評:此題考查了相似三角形的判定與性質(zhì)以及正方形的性質(zhì),全等三角形的判定與性質(zhì)以及正方形的性質(zhì)等知識.此題綜合性很強(qiáng),圖形比較復(fù)雜,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用與輔助線的準(zhǔn)確選擇.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖,A是硬幣圓周上一點(diǎn),硬幣與數(shù)軸相切于原點(diǎn)O(A與O點(diǎn)重合).假設(shè)硬幣的直徑為1個單位長度,若將硬幣沿?cái)?shù)軸正方向滾動一周,點(diǎn)A恰好與數(shù)軸上點(diǎn)A′重合,則點(diǎn)A′對應(yīng)的實(shí)數(shù)是
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸正方向上,將△OAB折疊,使點(diǎn)A落在邊OB上,記為A′,折痕為EF.
(1)當(dāng)A′E∥x軸時,求點(diǎn)A′和E的坐標(biāo);
(2)當(dāng)A′E∥x軸,且拋物線y=-
1
6
x2+bx+c經(jīng)過點(diǎn)A′和E時,求拋物線與x軸的交點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)A′在OB上運(yùn)動,但不與點(diǎn)O、B重合時,能否使△A′EF成為直角三角形?精英家教網(wǎng)若能,請求出此時點(diǎn)A′的坐標(biāo);若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OABC是一個放在平面直角坐標(biāo)系中的矩形,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=3,OC=4,平行于對角線AC的直線m從原點(diǎn)O出發(fā),沿x軸正方向以每秒1個單位的速度運(yùn)動,設(shè)直線m與矩形OABC的兩邊分精英家教網(wǎng)別交于點(diǎn)M、N,直線運(yùn)動的時間為t(秒).
(1)寫出點(diǎn)B的坐標(biāo);
(2)t為何值時,MN=
12
AC;
(3)設(shè)△OMN的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍;當(dāng)t為何值時,S有最大值?并求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸正方向上,將△OAB 折疊,使點(diǎn)A落在邊OB上,記為A′,折痕為EF.
(1)當(dāng)A′E∥x軸時,求點(diǎn)A′和E的坐標(biāo);
(2)當(dāng)A′E∥x軸,且拋物線y=-
1
6
x2+bx+c
經(jīng)過點(diǎn)A′和E時,求拋物線與x軸的交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,A是數(shù)軸上表示-30的點(diǎn),B是數(shù)軸上表示10的點(diǎn),C是數(shù)軸上表示18的點(diǎn),點(diǎn)A,B,C在數(shù)軸上同時向數(shù)軸的正方向運(yùn)動,點(diǎn)A運(yùn)動的速度是6個單位長度每秒,點(diǎn)B和C運(yùn)動的速度是3個單位長度每秒.設(shè)三個點(diǎn)運(yùn)動的時間為t(秒).
(1)當(dāng)t為何值時,線段AC=6(單位長度)?
(2)t≠5時,設(shè)線段OA的中點(diǎn)為P,線段OB的中點(diǎn)為M,線段OC的中點(diǎn)為N,求2PM-PN=2時t的值.

查看答案和解析>>

同步練習(xí)冊答案