如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.

(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).

(1)詳見(jiàn)解析;(2)6.

解析試題分析:(1)利用平行四邊形的對(duì)邊互相平行,可證得∠ADE=∠DEC, ∠C+∠B=180°,再利用等角的補(bǔ)角相等,可證得∠C=∠AFD,根據(jù)相似三角形的判定:有兩個(gè)角分別相等的兩個(gè)三角形相似.即可證明△ADF∽△DEC.(2)由(1)可知△ADF∽△DEC,根據(jù)相似三角形的性質(zhì),可列比例式,可求出DE的值,在直角三角形ADE中,根據(jù)勾股定理可求出AE的值.
試題解析:(8分)(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,
∴∠C+∠B=180°,∠ADF=∠DEC.
∵∠AFD+∠AFE=180°,∠AFE=∠B,
∴∠AFD=∠C.
在△ADF與△DEC中,

∴△ADF∽△DEC.
(2)解:∵四邊形ABCD是平行四邊形,∴CD=AB=8.
由(1)知△ADF∽△DEC,
,∴DE===12.
在Rt△ADE中,由勾股定理得:AE===6.
考點(diǎn):1、相似三角形的判定;2、相似三角形的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

提出問(wèn)題:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),(其中n為奇數(shù)),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
                                         
探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
(1)如圖②:四邊形ABCD中,點(diǎn)E、F是AD的3等分點(diǎn),點(diǎn)G、H是BC的3等分點(diǎn),連接EG、FH,那么S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢?
如圖③,連接EH、BE、DH,

因?yàn)椤鱁GH與△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因?yàn)椤鱁FH與△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四邊形EFHG=S四邊形EBHD
連接BD,
因?yàn)椤鱀BE與△ABD高相等,底的比是2:3,
所以SDBE=SABD
因?yàn)椤鰾DH與△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四邊形ABCD
即S四邊形EBHD=S四邊形ABCD
所以S四邊形EFHG=S四邊形EBHD=×S四邊形ABCD=S四邊形ABCD
(1)如圖④:四邊形ABCD中,點(diǎn)E、F是AD的5等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的5等分點(diǎn)中最中間2個(gè),連接EG、FH,猜想:S四邊形EFHG與S四邊形ABCD之間有什么關(guān)系呢                       
驗(yàn)證你的猜想:

(2)問(wèn)題解決:如圖①,在四邊形ABCD中,點(diǎn)E、F是AD的n等分點(diǎn)中最中間2個(gè),點(diǎn)G、H是BC的n等分點(diǎn)中最中間2個(gè),連接EG、FH,(其中n為奇數(shù))
那么S四邊形EFHG與S四邊形ABCD之間的關(guān)系為:                            (不必寫出求解過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在△和△中,,為線段上一點(diǎn),且
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).

(1)若△CEF與△ABC相似.
①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為_________
②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為_________;
(2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△ABC相似嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)P在AB上從A向B運(yùn)動(dòng),連接DP交AC于點(diǎn)Q.

(1)試證明:無(wú)論點(diǎn)P運(yùn)動(dòng)到AB上何處時(shí),都有△ADQ≌△ABQ;
(2)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)到什么位置時(shí),△ADQ的面積是正方形ABCD面積的
(3)若點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,再繼續(xù)在BC上運(yùn)動(dòng)到點(diǎn)C,在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△ADQ恰為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在△ABC中,AB="AC=" 5,BC= 8,D,E分別為BC,AB邊上一點(diǎn),∠ADE=∠C.

(1)求證:△BDE∽△CAD;
(2)若CD=2,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在菱形ABCD中,E為BC邊上一點(diǎn),∠AED=∠B.

(1)求證:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,點(diǎn)O為矩形ABCD的對(duì)稱中心,AB=10cm,BC=12cm.點(diǎn)E,F(xiàn),G分別從A,B,C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針?lè)较騽蛩龠\(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)F的運(yùn)動(dòng)速度為3cm/s,點(diǎn)G的運(yùn)動(dòng)速度為1.5cm/s.當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,△EBF關(guān)于直線EF的對(duì)稱圖形是△EB'F,設(shè)點(diǎn)E,F(xiàn),G運(yùn)動(dòng)的時(shí)間為t(單位:s).

(1)當(dāng)t=    s時(shí),四邊形EBFB'為正方形;
(2)若以點(diǎn)E,B,F(xiàn)為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似,求t的值;
(3)是否存在實(shí)數(shù)t,使得點(diǎn)B'與點(diǎn)O重合?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).

(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
(2)以原點(diǎn)O為位似中心,將△A1B1C1放大為原來(lái)的2倍,得到△A2B2C2,請(qǐng)?jiān)诘谌笙迌?nèi)畫出△A2B2C2,并求出SA1B1C1:SA2B2C2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案