精英家教網(wǎng)如圖,正方形ABCO的邊長是2,E是BC中點(diǎn),則E點(diǎn)的坐標(biāo)是
 
,直線AE的解析式是
 
分析:由于四邊形ABCO為正方形,則A(0,2),E為BC中點(diǎn),則E(2,1),再由A、E兩點(diǎn)確定直線AE的解析式.
解答:解:由于正方形ABCO的邊長是2,E是BC中點(diǎn),
則A(0,2),E(2,1);
設(shè)直線AE的解析式為y=kx+b,
b=2
2k+b=1
,解得:
k=-
1
2
b=2

故直線AE的解析式是y=-
1
2
x+2.
點(diǎn)評:本題考查了坐標(biāo)位置的確定及待定系數(shù)法求解一次函數(shù)解析式,較為簡單,容易掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO放在平面直角坐標(biāo)系中,其中點(diǎn)O為坐標(biāo)原點(diǎn),A、C兩點(diǎn)分別在x軸的負(fù)半軸和y軸的正半軸上,點(diǎn)B的坐標(biāo)為(-4,4).已知點(diǎn)E、點(diǎn)F分別從A、點(diǎn)B同時出發(fā),點(diǎn)E以每秒2個單位長度的速度在線段AB上來回運(yùn)動.點(diǎn)F沿B→C→0方向,以每秒1個單位長度的速度向點(diǎn)O運(yùn)動,當(dāng)點(diǎn)F到達(dá)點(diǎn)O時,E、F兩點(diǎn)都停止運(yùn)動.在E、F的運(yùn)動過程中,存在某個時刻,使得△OEF的面積為6.那么點(diǎn)E的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCO的邊長為4,D為AB上一點(diǎn),且BD=3,以點(diǎn)C為中心,把△CBD順時針旋轉(zhuǎn)90°,得到△CB1D1
(1)直接寫出點(diǎn)D1的坐標(biāo);
(2)求點(diǎn)D旋轉(zhuǎn)到點(diǎn)D1所經(jīng)過的路線長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCO的邊長為
5
,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,把正方形ABCO繞點(diǎn)O順時針旋轉(zhuǎn)α后得到正方形A1B1C1O(α<45°),精英家教網(wǎng)B1C1交y軸于點(diǎn)D,且D為B1C1的中點(diǎn),拋物線y=ax2+bx+c過點(diǎn)A1、B1、C1
(1)求tanα的值;
(2)求點(diǎn)A1的坐標(biāo),并直接寫出點(diǎn)B1、點(diǎn)C1的坐標(biāo);
(3)求拋物線的函數(shù)表達(dá)式及其對稱軸;
(4)在拋物線的對稱軸上是否存在點(diǎn)P,使△PB1C1為直角三角形?若存在,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCO的邊長為
5
,O為原點(diǎn),BC交y軸于點(diǎn)D,且D為BC邊的中點(diǎn),拋物線y=a精英家教網(wǎng)x2+bx+c經(jīng)過B、C且與y軸的交點(diǎn)為E(0,
10
3
)

(1)求點(diǎn)C的坐標(biāo),并直接寫出點(diǎn)A、B的坐標(biāo);
(2)求拋物線的解析式及對稱軸;
(3)探索在拋物線的對稱軸上是否存在點(diǎn)P,使△PBC為直角三角形?若存在,直接寫出所有滿足條件的P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案