在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC.試探索以下問(wèn)題:
作業(yè)寶
(1)當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與DB的大小關(guān)系,請(qǐng)你直接寫出結(jié)論:AE______ DB(填“>”“<”或“=”).
(2)當(dāng)點(diǎn)E為AB上任意一點(diǎn)時(shí),如圖2,AE與DB的大小關(guān)系會(huì)改變嗎?請(qǐng)說(shuō)明理由.
(3)在等邊三角形ABC中,若點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,當(dāng)△ABC的邊長(zhǎng)為1,AE=2時(shí),CD的長(zhǎng)為多少?

解:(1)如圖1,∵△ABC是等邊三角形,點(diǎn)E是AB的中點(diǎn),
∴CE平分∠ACB,CE⊥AB,
∴∠ACB=60°,∠BEC=90°,AE=BE,
又∵ED=EC,
∴∠D=∠ECB=30°,
∴∠DEC=120°,
∴∠DEB=120°-90°=30°,
∴∠D=∠DEB=30°,
∴BD=BE=AE,即AE=DB.
故答案為:=.

(2)當(dāng)點(diǎn)E為AB上任意一點(diǎn)時(shí),如圖2,AE與DB的大小關(guān)系不會(huì)改變.理由如下:
如圖2,過(guò)E作EF∥BC交AC于F,
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,
∴△AEF是等邊三角形,
∴AE=EF=AF,
∵∠ABC=∠ACB=∠AFE=60°,
∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,
∵DE=EC,
∴∠D=∠ECD,
∴∠BED=∠ECF,
在△DEB和△ECF中,
,
∴△DEB≌△ECF(AAS),
∴BD=EF=AE,即AE=BD,

(3)解:CD=1或3,
理由是:分為兩種情況:
①如圖3,過(guò)A作AM⊥BC于M,過(guò)E作EN⊥BC于N,
則AM∥EN,
∵△ABC是等邊三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=BC=,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
∴△AMB∽△ENB,
=,
=,
∴BN=,
∴CN=1+=,
∴CD=2CN=3;

②如圖4,作AM⊥BC于M,過(guò)E作EN⊥BC于N,
則AM∥EN,
∵△ABC是等邊三角形,
∴AB=BC=AC=1,
∵AM⊥BC,
∴BM=CM=BC=,
∵DE=CE,EN⊥BC,
∴CD=2CN,
∵AM∥EN,
=,
=,
∴MN=1,
∴CN=1-=,
∴CD=2CN=1,
即CD=3或1.
分析:(1)根據(jù)等邊三角形性質(zhì)和等腰三角形的性質(zhì)求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;
(2)過(guò)E作EF∥BC交AC于F,求出等邊三角形AEF,證△DEB和△ECF全等,求出BD=EF即可;
(3)當(dāng)D在CB的延長(zhǎng)線上,E在AB的延長(zhǎng)線式時(shí),由(2)求出CD=3,當(dāng)E在BA的延長(zhǎng)線上,D在BC的延長(zhǎng)線上時(shí),求出CD=1.
點(diǎn)評(píng):本題綜合考查了等邊三角形的性質(zhì)和判定,等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,三角形的外角性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,解(2)小題的關(guān)鍵是構(gòu)造全等的三角形后求出BD=EF,解(3)小題的關(guān)鍵是確定出有幾種情況,求出每種情況的CD值,注意,不要漏解。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖所示,在等邊三角形ABC中,∠B、∠C的平分線交于點(diǎn)O,OB和OC的垂直平分線交BC于E、F,試用你所學(xué)的知識(shí)說(shuō)明BE=EF=FC的道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,已知在等邊三角形ABC中,D、E是AB、AC上的點(diǎn),且AD=CE.
求證:CD=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在等邊三角形ABC中,點(diǎn)D、E分別是AB、BC延長(zhǎng)線上的點(diǎn),且BD=CE.
求證:DC=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊三角形ABC中,D為AC的中點(diǎn),
AE
EB
=
1
3
,則和△AED(不包含△AED)相似的三角形有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在等邊三角形ABC中,點(diǎn)D在AB邊上,點(diǎn)E在BC邊上,且AD=BE.連接AE、CD交于點(diǎn)P,則∠APD=
60°
60°

查看答案和解析>>

同步練習(xí)冊(cè)答案