如圖,BE、CF都是△ABC的角平分線,且∠BDC=1100,則∠A的度數(shù)為 (     )
A.500B.400C.700D.350
B.

試題分析:∵BE、CF都是△ABC的角平分線,
∴∠A=180°-(∠ABC+∠ACB),
=180°-2(∠DBC+∠BCD)
∵∠BDC=180°-(∠DBC+∠BCD),
∴∠A=180°-2(180°-∠BDC)
∴∠BDC=90°+∠A,
∴∠A=2(110°-90°)=40°.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某人在D處測(cè)得山頂C的仰角為37o,向前走200米來到山腳A處,測(cè)得山坡AC的坡度為i=1∶0.5,求山的高度(不計(jì)測(cè)角儀的高度,參考數(shù)據(jù):).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

RtΔABC中,∠C=90°,點(diǎn)D、E分別是ΔABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠.
(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠=50°,則∠1+∠2=  ___________ °;
(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠、∠1、∠2之間有何關(guān)系?
(3)若點(diǎn)P在Rt△ABC斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),則∠、∠1、∠2之間有何關(guān)系?猜想并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,E(8,0),F(xiàn)(0 , 6).
(1)當(dāng)G(4,8)時(shí),則∠FGE=                   °
(2)在圖中的網(wǎng)格區(qū)域內(nèi)找一點(diǎn)P,使∠FPE=90°且四邊形OEPF被過P點(diǎn)的一條直線分割成兩部分后,可以拼成一個(gè)正方形.
要求:寫出點(diǎn)P點(diǎn)坐標(biāo),畫出過P點(diǎn)的分割線并指出分割線(不必說明理由,不寫畫法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

學(xué)習(xí)了勾股定理的逆定理,我們知道:在一個(gè)三角形中,如果兩邊的平方和等于第三邊的平方,那么這個(gè)三角形為直角三角形.類似地,我們定義:對(duì)于任意的三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若滿足,則稱這個(gè)三角形為勾股三角形.
(1)根據(jù)“勾股三角形”的定義,請(qǐng)你直接判斷命題:“直角三角形是勾股三角形”是真命題還是假命題?
(2)已知某一勾股三角形的三個(gè)內(nèi)角的度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(3)如圖,△ABC內(nèi)接于⊙O,AB=,AC=1+,BC=2,⊙O的直徑BE交AC于點(diǎn)D.
①求證:△ABC是勾股三角形;
②求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于點(diǎn)D,E為AB上一點(diǎn),連接DE,則下列說法錯(cuò)誤的是( 。
A.∠CAD=30°B.AD="BD" C.BD="2CD" D.CD=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知等腰三角形的兩邊長(zhǎng)分別為a、b,且a、b滿足+(2a+3b﹣13)2=0,則此等腰三角形的周長(zhǎng)為( 。
A.7或8B.6或1OC.6或7D.7或10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的頂點(diǎn)C在直線a上,且點(diǎn)B,D到a的距離分別是1,2.則 這個(gè)正方
形的邊長(zhǎng)是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

到△ABC的三個(gè)頂點(diǎn)距離相等的點(diǎn)是△ABC的(      ).
A.三條中線的交點(diǎn)B.三條角平分線的交點(diǎn)
C.三條高的交點(diǎn)D.三條邊的垂直平分線的交點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案