【題目】如圖,已知正方形ABCD的邊長為4,以點(diǎn)A為圓心,2為半徑作圓,E是⊙A上的任意一點(diǎn),將點(diǎn)E繞點(diǎn)D按逆時針方向轉(zhuǎn)轉(zhuǎn)90°得到點(diǎn)F,則線段AF的長的最小值____.
【答案】4.
【解析】
根據(jù)題意先證明△ADE≌△CDF,則CF=AE=1,根據(jù)三角形三邊關(guān)系得:AF≤AC-CF,可知:當(dāng)F在AC上時,AF最小,所以由勾股定理可得AC的長,可求得AF的最小值.
解:如圖,連接FC,AC,AE.
∵ED⊥DF,
∴∠EDF=∠EDA+∠ADF=90°,
∵四邊形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠ADF+∠CDF=90°,
∴∠EDA=∠CDF,
在△ADE和△CDF中,
∴△ADE≌△CDF(SAS),
∴CF=AE=1,
∵正方形ABCD的邊長為4,
∴AC=4,
∵AF≥AC-CF,
∴AF≥4-2
∴AF的最小值是4-2;
故答案為:4-2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三孔橋橫截面的三個孔都呈拋物線形,左右兩個拋物線形是全等的.正常水位時,大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒小孔時,大孔的水面寬度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=80°,點(diǎn)D,E分別在邊AB,AC上,且DA=DE=CE.
(1)求作點(diǎn)F,使得四邊形BDEF為平行四邊形;(要求:尺規(guī)作圖,保留痕跡,不寫作法)
(2)連接CF,寫出圖中經(jīng)過旋轉(zhuǎn)可完全重合的兩個三角形,并指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,經(jīng)順時針旋轉(zhuǎn)后與重合.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)了 度;
(2)如果,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),A(4,0),B(-4,0),D是y軸上的一個動點(diǎn),∠ADC=90°(A、D、C按順時針方向排列), BC與經(jīng)過A、B、D三點(diǎn)的⊙M交于點(diǎn)E,DE平分∠ADC,連結(jié)AE,BD.顯然ΔDCE、ΔDEF、ΔDAE是半直角三角形.
(1)求證:ΔABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點(diǎn)D的坐標(biāo)為(0,8),求AE的長;
(4)BC交y軸于點(diǎn)N,問的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,小明進(jìn)行了如下的尺規(guī)作圖:
①分別以點(diǎn)A、B為圓心,以大于AB的長為半徑作弧,兩弧分別相交于點(diǎn)P、Q;
②作直線PQ分別交邊AB、BC于點(diǎn)E、D.
(1)小明所求作的直線DE是線段AB的 ;
(2)聯(lián)結(jié)AD,AD=7,sin∠DAC=,BC=9,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司經(jīng)銷一種商品,每件商品的成本為元,經(jīng)市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量(件)隨銷售單價(元/件)的變化而變化,具體關(guān)系式為,設(shè)這種商品在這段時間內(nèi)的銷售利潤為(元),解答如下問題:
(1)求與之間的函數(shù)表達(dá)式;
(2)當(dāng)取何值時,的值最大?
(3)如果物價部門規(guī)定這種商品的銷售單價不得高于元/件,公司想要在這段時間內(nèi)獲得元的銷售利潤,那么銷售單價應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com