【題目】定義:對(duì)于平面直角坐標(biāo)系中的線段和點(diǎn),在中,當(dāng)邊上的高為2時(shí),稱為的“等高點(diǎn)”,稱此時(shí)為的“等高距離”.
(1)若點(diǎn)的坐標(biāo)為(1,2),點(diǎn)的坐標(biāo)為(4,2),則在點(diǎn) (1,0),(,4), (0,3)中,的“等高點(diǎn)”是點(diǎn)___;
(2)若(0,0),=2,當(dāng)的“等高點(diǎn)”在軸正半軸上且“等高距離”最小時(shí),點(diǎn)的坐標(biāo)是__.
【答案】A或B 或
【解析】
(1)根據(jù)“等高點(diǎn)”的概念解答即可;
(2)先證明“等高距離”最小時(shí)△MPQ為等腰三角形,再利用勾股定理求出點(diǎn)Q坐標(biāo)即可.
(1)①∵P(1,2),Q(4,2),
∴在點(diǎn)A(1,0),B(,4)到PQ的距離為2.
∴PQ的“等高點(diǎn)”是A或B,
故答案為:A或B;
(2)如圖2,過PQ的“等高點(diǎn)”M作MN⊥PQ于點(diǎn)N,
∴PQ=2,MN=2.
設(shè)PN=x,則NQ=2-x,
在Rt△MNP和Rt△MNQ中,由勾股定理得:
MP2=22+x2=4+x2,MQ2=22+(2-x)2=x2-4x+8,
∴MP2+MQ2=2x2-4x+12=2(x-1)2+10,
∵MP2+MQ2≤(MP+MQ)2,
∴當(dāng)MP2+MQ2最小時(shí)MP+MQ也最小,此時(shí)x=1,
即PN=NQ,
∴△MPQ為等腰三角形,
∴MP=MQ=,
如圖3,設(shè)Q坐標(biāo)為(x,y),過點(diǎn)Q作QE⊥y軸于點(diǎn)E,
則在Rt△MNP和Rt△MNQ中由勾股定理得:
QE2=QP2-OE2=22-y2=4-y2,QE2=QM2-ME2=,
∴,
解得y=,
QE2=4-y2=4-()2=,
當(dāng)點(diǎn)Q在第一象限時(shí)x,當(dāng)點(diǎn)Q在第二象限時(shí)x,
∴或,
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=4,BC=4,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AD邊上的一個(gè)動(dòng)點(diǎn),將△AEF沿EF所在直線翻折,得到△A'EF,連接A'C,A'D,則當(dāng)△A'DC是以A'D為腰的等腰三角形時(shí),FD的長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著時(shí)代的不斷發(fā)展,新穎的網(wǎng)絡(luò)購(gòu)進(jìn)逐漸融入到人們的生活中,“拼一拼”電商平臺(tái)上提供了一種拼團(tuán)購(gòu)買方式,當(dāng)拼團(tuán)(單數(shù)不超過15單)成功后商家將會(huì)讓利一定的額度給予顧客實(shí)惠.現(xiàn)在某商家準(zhǔn)備出手一種每件成本25元/件的新產(chǎn)品,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),單價(jià)y(單位:元)、日銷售量m(單位:件)與拼單數(shù)x(單位:?jiǎn)危┲g存在著如表的數(shù)量關(guān)系:
拼單數(shù)x(單位:?jiǎn)危?/span> | 2 | 4 | 8 | 12 |
單價(jià)y(單位:元) | 34.50 | 34.00 | 33.00 | 32.00 |
日銷售量m(單位:件) | 68 | 76 | 92 | 108 |
請(qǐng)根據(jù)以上提供的信息解決下列問題:
(1)請(qǐng)直接寫出單價(jià)y和日銷售量m分別與拼單數(shù)x之間的一次函數(shù)關(guān)系式;
(2)拼單數(shù)設(shè)置為多少單時(shí)的日銷售利潤(rùn)最大,最大的銷售利潤(rùn)是多少?
(3)在實(shí)際銷售過程中,廠家希望能有更多的商品出售,因此對(duì)電商每銷售一件商品廠家就給予電商補(bǔ)助a元(a≤2),那么電商在獲得補(bǔ)助之日后日銷售利潤(rùn)能夠隨單數(shù)x的增大而增大,那么a的取值范圍是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+(m﹣2)x+3(m+1)與x軸交于AB兩點(diǎn)(A在B左側(cè)),與y軸正半軸交于點(diǎn)C.
(1)當(dāng)m≠﹣4時(shí),說明這個(gè)二次函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
(2)若OAOB=6,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上找一點(diǎn)P,使S△PAC的面積為15,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)是的內(nèi)部一點(diǎn),連接、和,如果、和中有兩個(gè)角相等,則稱是的“等心”.特別地,若這三個(gè)角都相等,則稱是的“恒等心”.
(1)在等邊中,點(diǎn)是恒等心,,則點(diǎn)到的距離是_______;
(2)如圖2,在中,,點(diǎn)是的外接圓外一點(diǎn),連接,交于點(diǎn),試判斷是不是的“等心”,并說明理由;
(3)如圖3,分別以銳角的邊、為邊向外做等邊和等邊,和相交于點(diǎn),求證:點(diǎn)是的“恒等心”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,D是的中點(diǎn),于E,交CB于點(diǎn)過點(diǎn)D作BC的平行線DM,連接AC并延長(zhǎng)與DM相交于點(diǎn)G.
求證:GD是的切線;
求證:;
若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點(diǎn)A、B,與y軸交于點(diǎn)C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)R為第一象限的拋物線上一點(diǎn),分別連接RB、RC,設(shè)△RBC的面積為s,點(diǎn)R的橫坐標(biāo)為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點(diǎn)D在x軸的負(fù)半軸上,點(diǎn)F在y軸的正半軸上,點(diǎn)E為OB上一點(diǎn),點(diǎn)P為第一象限內(nèi)一點(diǎn),連接PD、EF,PD交OC于點(diǎn)G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過點(diǎn)R作RT⊥OB于點(diǎn)T,交PC于點(diǎn)S,若點(diǎn)P在BT的垂直平分線上,OB﹣TS=,求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,是延長(zhǎng)線上一點(diǎn),與相切于點(diǎn),,.
(1)求的度數(shù);
(2)求證:;
(3)若,求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.?dāng)S一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
B.審查書稿中有哪些學(xué)科性錯(cuò)誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績(jī)的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績(jī)較穩(wěn)定
D.?dāng)S兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com