精英家教網 > 初中數學 > 題目詳情

若邊長為a的正方形的面積等于長為b+c,寬為b-c的長方形的面積,則以a、b、c為三邊長的三角形是________三角形.

.直角

解析考點:勾股定理的逆定理;平方差公式.
分析:根據題意即可得:(b+c)(b-c)=a2,則可求得b2+c2=a2,由勾股定理的逆定理,即可判定以a、b、c為三邊長的三角形是直角三角形.
解:根據題意得:(b+c)(b-c)=a2,
即b2+c2=a2
∴以a、b、c為三邊長的三角形是直角三角形.
故答案為:直角.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉.
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 

②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為
 
;
(2)若正多邊形為正方形,扇形的圓心角α=90°時,①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當扇形紙板的圓心角α為
 
時,正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉.當扇形紙板的圓心角為
 
時,正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.
精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

O是邊長為a的正多邊形的中心,將一塊半徑足夠長,圓心角為α的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉.
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請你通過觀察或測量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長度為________;
(2)若正多邊形為正方形,扇形的圓心角α=90°時,①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為________;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當扇形紙板的圓心角α為________時,正五邊形的邊被扇形紙板覆蓋部分的總長度仍為定值a.
(4)一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉.當扇形紙板的圓心角為________時,正n邊形的邊被扇形紙板覆蓋部分的總長度為定值a.

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(26):2.3 二次函數的應用(解析版) 題型:解答題

現有邊長為180厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數學興趣小組經討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數據(不要求寫出解答過程).

查看答案和解析>>

科目:初中數學 來源:第6章《二次函數》中考題集(27):6.4 二次函數的應用(解析版) 題型:解答題

現有邊長為180厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數學興趣小組經討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數據(不要求寫出解答過程).

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(28):2.8 二次函數的應用(解析版) 題型:解答題

現有邊長為180厘米的正方形鐵皮,準備將它設計并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數學興趣小組經討論得出結論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關于x的函數關系式(不必寫出x的取值范圍),并求出當x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設計的水槽的橫截面面積更大.畫出你設計的草圖,標上必要的數據(不要求寫出解答過程).

查看答案和解析>>

同步練習冊答案