【題目】如圖,兩個以點O為圓心的同心圓,

圖1 圖2
(1)如圖1,大圓的弦AB交小圓于C,D兩點,試判斷AC與BD的數(shù)量關(guān)系,并說明理由.
(2)如圖2,將大圓的弦AB向下平移使其為小圓的切線,切點為C,證明:AC=BC.
(3)在(2)的基礎(chǔ)上,已知AB=20cm,直接寫出圓環(huán)的面積.

【答案】
(1)解:AC=BD,理由是:
過O作OH⊥AB,由垂徑定理得AH=BH,CH=DH,

AH-CH=BH-DH,
即AC=BD
(2)解:連接OC,如圖,

AB是小圓的切線,
OC⊥AB,則AC=BC
(3)解:如圖,連接OB.

∵大圓的弦AB是小圓的切線, ∴OC⊥AB,AC=CB, ∴OB2-OC2=(20÷2)2=102 , ∵S圓環(huán)=S大-S小=πOB2-πOC2=π(OB2-OC2), ∴S圓環(huán)=100πcm2
【解析】(1)AC=BD,理由是:過O作OH⊥AB,由垂徑定理得AH=BH,CH=DH,根據(jù)等式的性質(zhì)得出AH-CH=BH-DH,從而得出AC=BD ;
(2)連接OC,如圖,根據(jù)切線的性質(zhì)定理得出OC⊥AB,再根據(jù)垂徑定理得出AC=BC ;
(3)連接OB.根據(jù)切線的性質(zhì)定理得出OC⊥AB,再根據(jù)垂徑定理得出AC=BC ,然后根據(jù)勾股定理及等式的性質(zhì)得出OB2-OC2=(20÷2)2=102 ,然后根據(jù)S圓環(huán)=S大-S小=πOB2-πOC2=π(OB2-OC2)算出答案。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在網(wǎng)格(每個小正方形的邊長均為1)中選取9個格點(格線的交點稱為格點),如果以A為圓心,r為半徑畫圓,選取的格點中除點A外恰好有3個在圓內(nèi),則r的取值范圍為( )

A.2 <r<
B. <r≤3
C. <r<5
D.5<r<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】興華商店準(zhǔn)備購進(jìn)甲、乙兩種書包出售,每個甲種書包的進(jìn)價比每個乙種書包的進(jìn)價多20元,購進(jìn)3個甲種書包的費用和購進(jìn)4個乙種書包的費用相等,現(xiàn)計劃購進(jìn)兩種書包共100個,其中乙種書包不少于35個.

1)甲種書包進(jìn)價為__________/個,乙種書包進(jìn)價為__________/個;

2)若甲種書包每個售價120元,乙種書包每個售價90元,且購進(jìn)這100個書包的費用不低于7200元,如果這100個書包都可售完,那么興華商店如何進(jìn)貨才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,

1)如圖1,點為線段的中點,連接,.若,求線段的長.

2)如圖2為線段上一點(不與,重合),以為邊向上構(gòu)造等邊三角形,線段交于點,連接,,為線段的中點.連接,判斷的數(shù)量關(guān)系,并證明你的結(jié)論.

3)在(2)的條件下,若,請你直接寫出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC,∠B=50°,P 是邊 AB 上的一個動點(不與頂點 A 重合),則∠BPC 的度數(shù)可能是

A. 50° B. 80° C. 100° D. 130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.

(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A=∠B,AE=BE,點DAC邊上,∠1=∠2,AEBD相交于點O

1)求證:AECBED;

2)若∠1=42°,求BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料

已知:如圖,四邊形ABCD是平行四邊形;

求作:菱形AECF,使點EF分別在BC,AD上.
小凱的作法如下:
1)連接AC;
2)作AC的垂直平分線EF分別交BC,ADEF
3)連接AE,CF
所以四邊形AECF是菱形.

老師說:“小凱的作法正確”.

回答問題:
已知:在平行四邊形ABCD中,點E、F分別在邊BCAD______________________________________________.(補(bǔ)全已知條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC△DBE均為等腰直角三角形.

(1)求證:AD=CE;

(2)求證:ADCE垂直.

查看答案和解析>>

同步練習(xí)冊答案