如圖,在平面直角坐標系xOy中,矩形OEFG的頂點F坐標為(4,2),OG邊與y軸重合。將矩形OEFG繞點O逆時針旋轉(zhuǎn),使點F落在y軸的點N處,得到矩形OMNP,OM
與GF交于點A.
小題1:判斷△OGA和△NPO是否相似,并說明理由;
小題2:求過點A的反比例函數(shù)解析式;
小題3:若(2)中求出的反比例函數(shù)的圖象與EF交于B點, 請?zhí)剿鳎褐本AB與OM的位置關(guān)系,并說明理由.
小題4:在GF所在直線上,是否存在一點Q,使△AOQ為等腰三角形.若存在,請直接寫出          
所有滿足要求的Q點坐標.

小題1:∵∠OGA=∠M=90°,
∠GOA=∠MON
∴△OGA∽△OMN;
小題2:∵AG:OP=OG:NP,∵OP=OG=2、PN=OM=OE=4,
∴AG=1
∴A(1,2)                             ………………3分

小題3:AB⊥ OM                               ………………5分
代入得 B(4,),                      ………………6
∵AG:BF=OG:AF=2:3,∠AGO=∠BFA=900
△OGA∽△AFB                             ………………7分
∴∠AOG=∠BAF  ∵∠AOG+∠OAG=900
∴∠BAF+∠OAG=900
∴ ∠OAB=900                             
∴AB⊥OM                                 ………………8分
(其它方法酌情給分)
小題4:Q (1+, 2) 或Q(1-,2)                  ………………9分
Q(-1,2) 或  Q(-1.5,2)
(1)根據(jù)兩個角對應相等,即可證明兩個三角形相似;
(2)要求反比例函數(shù)的解析式,則需求得點A的坐標,即要求得AG的長,根據(jù)旋轉(zhuǎn)的兩個圖形全等的性質(zhì)以及相似三角形的對應邊的比相等可以求解
(3)求出B點坐標,通過△OGA∽△AFB ,求得∠OAB=900,從而得出結(jié)論
(4)分別有四種情況符合條件:AQ="OA" (由兩種情況),OQ=OA,QA=OQ
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在邊長為10的正方形ABCD中,以AB為直徑作半圓O,如圖①,E是半圓上一動點,過點EEFAB,垂足為F,連結(jié)DE.

(1)當DE=10時,求證:DE與圓O相切;
(2)求DE的最長距離和最短距離;
(3)如圖②,建立平面直角坐標系,當DE =10時,試求直線DE的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知圖中的每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.若是位似圖形,且頂點都在格點上,則位似中心的坐標是      

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知線段OA⊥OB,C為OB上中點,D為AO上一點,連AC、BD交于P點.

(1)如圖1,當OA=OB且D為AO中點時,求的值;
(2)如圖2,當OA=OB,=時,求△BPC與△ACO的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,以點M(-1,0)為圓心的圓與y軸、x軸分別交于點A、B、C、D,直線y=-x-與⊙M相切于點H,交x軸于點E,交y軸于點F.
小題1:請直接寫出OE、⊙M的半徑r、CH的長;
小題2:如圖②,弦HQ交x軸于點P,且DP:PH=3:2,求cos∠QHC的值;
小題3:如圖③,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.
     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥CD,且AB=2CD,E、F分別是AB、BC的中點,EF與BD相交于點M.

小題1:△EDM與△FBM相似嗎?為什么?
小題2:若DB=9,求BM的長

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

兩個相似多邊形的面積比是,其中較小多邊形周長為36cm,則較大多邊形周長為
A.48cmB.54cmC.56cmD.64cm( ▲ )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,Rt⊿ABC中,∠C=90°,把AB黃金分割后的較長線段長等于BC長,則cosB的值為______

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,∠ABD=∠BCD=900,AD=10,BD=6。如果兩個三角形相似,則CD的長為
A.3.6B.4.8C.4.8或3.6D.無法確定

查看答案和解析>>

同步練習冊答案