精英家教網(wǎng)如圖,如果直線L上依次有3個點A、B、C,那么
(1)在直線L上共有多少射線?多少條線段?
(2)在直線L上增加一個點,共增加了多少條射線?多少條線段?
(3)如果在直線L上增加到n個點,則共有多少條射線?多少條線段?
分析:(1)一個直線上的每一個點對應(yīng)兩條射線,可求出射線的條數(shù),分別以A、B為起點可查找出線段的條數(shù).
(2)根據(jù)分析(1)可得出答案.
(3)根據(jù)(1)(2)可得出增加一個點后增加的射線條數(shù)及線段條數(shù),有特殊到一般總結(jié)即可得出答案.
解答:解:(1)以A,B,C為端點的射線各自有2條,因而共有射線6條,
線段有:AB,AC,BC,共有線段3條.
(2)由分析得:增加一個點增加2條射線,增加3條線段.
(3)由分析(1)可得共有2n條射線,
線段的總條數(shù)是
1
2
n(n-1)條.
點評:本題考查直線射線及線段的知識,難度不大,注意基本概念的掌握及規(guī)律的總結(jié).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點O為圓心的⊙O的半徑為-1,直線l y=-X-與坐標(biāo)軸分別交于A,C兩點,點B的坐標(biāo)為(4,1) ,⊙B與X軸相切于點M. 

(1)  求點A的坐標(biāo)及∠CAO的度數(shù);       

(2) ⊙B以每秒1個單位長度的速度沿X軸負(fù)方向平移,同時,直線l繞點A順時針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切.問:直線AC繞點A每秒旋轉(zhuǎn)多少度?

(3)如圖2.過A,O,C三點作⊙O1,點E是劣弧上一點,連接EC,EA.EO,當(dāng)點E在劣弧上運(yùn)動時(不與A,O兩點重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說明理由.                                                    

.                       

 

 

【解析】(1)已知點A,C的坐標(biāo),故可推出OA=OC,最后可得∠CAO=45°.

(2)依題意,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,連接B1O,B1N,則MN=3.連接B1A,B1P可推出∠PAB1=∠NAB1.又因為OA=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O繼而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直線AC繞點A平均每秒30度.

(3)在CE上截取CK=EA,連接OK,證明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可證明

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省臺州六校九年級上學(xué)期第二次聯(lián)考數(shù)學(xué)卷(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點O為圓心的⊙O的半徑為-1,直線l y=-X-與坐標(biāo)軸分別交于A,C兩點,點B的坐標(biāo)為(4,1) ,⊙B與X軸相切于點M. 

(1)  求點A的坐標(biāo)及∠CAO的度數(shù);       

(2) ⊙B以每秒1個單位長度的速度沿X軸負(fù)方向平移,同時,直線l繞點A順時針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切.問:直線AC繞點A每秒旋轉(zhuǎn)多少度?

(3)如圖2.過A,O,C三點作⊙O1 ,點E是劣弧上一點,連接EC,EA.EO,當(dāng)點E在劣弧上運(yùn)動時(不與A,O兩點重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說明理由.                                                    

.                       

 

 

【解析】(1)已知點A,C的坐標(biāo),故可推出OA=OC,最后可得∠CAO=45°.

(2)依題意,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,連接B1O,B1N,則MN=3.連接B1A,B1P可推出∠PAB1=∠NAB1.又因為OA=OB1=,故∠AB1O=∠NAB1,∠PAB1=∠AB1O繼而推出PA∥B1O.然后在Rt△NOB1中∠B1ON=45°,∴∠PAN=45°得出∠1=90°.然后可得直線AC繞點A平均每秒30度.

(3)在CE上截取CK=EA,連接OK,證明△OAE≌△OCK推出OE=OK,∠EOA=∠KOC,∠EOK=∠AOC=90°.最后可證明

 

查看答案和解析>>

同步練習(xí)冊答案